SOUTH AFRICAN SUGAR INDUSTRY

AGRONOMISTS' ASSOCIATION

Irrigation Trial II

Catalogue No.: 2 Soil Analysis: p.p.m. pH OM % Clay % This crop: P, 1R, 2R. (Second Cycle) PK Ĉa Mg 5.33 3.23 -5.28 2.95 -15 115 2030 1222 Site: Jackson, Umhloti Valley. Plant: Altitude: 140' lR 23 165 1299 279 Soil: M.E. Shale, Windermere clay loam. 5.79 5.59 44.3 66 228 1160 762 2R Design: Random block. Variety: N.50/211. Age: Fertiliser: Plant 15 mths. June 1962 - Aug. 1963. Plant Urea 225 450 675 500 25011 mths. Aug. 1963 - July 1964. lR 2R 12 mths. July 1964 - July 1965. 400 800 1200 500 300 1R LAN 2R LAN Ν \mathbf{P} 800 500 300 ٠ Treatments: 2nd Ratoon Plant - 1st Ratoon WO = No irrigation. Dryland. WO = No irrigation. Dryland. Wl = 1" below F.C. = Irrigation 1 inch. W1 = 1" below F.C. = Irrigation 1 inch. $\frac{11}{11} \frac{11}{11} = \frac{11}{11}$ W2 = 2" 2 " W2 = 2''2 " 3 " W3 = 3" " ₩3 = 3" 11 3

Fl = " " interrow.
S0 = No subsoiling.

FO = Fertiliser on cane line.

S1 = Subsoiling.

Results:

و سیسی

<u> Plant - 1st Ratoon</u>

Tons Cane per Acre.

Crop	WO	Wl	W2	₩3	Nl	NŻ	N3
P	23.7	39.1	36.3	26.8	30.9	32.2	31.3
lR	17.0	43.1	34.3	27.1	31.8	29.6	29.8

2nd Ratoon

.

Tons Cane per Acre.

Crop	WO	٧l	W2	SO	Sl	FO	Fl
. 2R	5.5	31.9	27•4	21.6	21.6	21.6	21.6

<u>Plant - 1st Ratoon</u>

Sucrose % Cane.

Crop	WO	Wl	W2	₩3	Nl	N2	N3
Ρ.	12.1	13.8	13.2	11.7			
lR	12.2	13.0	12.7	12.6			

2nd Ratoon

Sucrose % Cane.

Crop	WO	Wl	W2	50	Sl	FO	Fl
2R	10.2	13.7	12.6	12.4	11.9	12.3	12.0

- Page Two -

<u>Plant - 1st Ratoon</u>

Tons Sucrose per Acre.

	Crop	WO	Wl	W2	₩3	
62/3	Ρ	2.87/	5.38	4.78	3.14	6,43
63/4	lR	2.07	5.61	4.36	3.40	4.64

2nd Ratoon

Tons Sucrose per Acre.

	Crop	WO	٧l	W2	SO	Sl	FO	Fl	
b+ 5	2R	0.58	4.38	3.43	2.77	2.70	2.82	2.77	1,30

9th May, 1966.

4 m 2

SOUTH AFRICAN SUGAR INDUSTRY .

AGRONOMISTS' ASSOCIATION

Irrigation Trial II.

Catalogue No.: 2.	Soil and	alysia	3:			p.]	0.m.	
This crop: P, 1R, 2R, 3R.		pH.	OM % (lay %	P	K	Ca	Mg.
Site: Jackson, Umhloti Valley.	Plant:	_		-		_	_	_
Altitude: 140'	lR	5.69	4.81	-	51	221	à	-
Soil: M.E. Shale, Windermere.	2R	5.80	5.29	-	60	190	3060	
Design: Random Block with split	3R	5.66	3.81	-	191	142		1058
nitrogen plots.	Age:							
Variety: N:Co.310.	Plant	= 20	mths.	March	19	56 -	Nov.	1957.
Fertiliser:	lR	= 13	mths.	Nov.	19	57 -	Dec.	1958.
N1 N2 N3 P K	2R	= 18	mths.	Dec.	19	58 -	June	1960.
Plant = A/N = 300 600 900 1000 300	3R	= 18	mths.	June	190	50 -	Dec.	1961.
$1R = A/N \cdot 300 \ 600 \ 900 \ 500 \ 300$	-							
2R = A/N 300 600 900 500 300								
3R = Urea 225 450 675 500 300								
Water regime: Irrigated land,								

Object:

7 1934 -

WO = No irrigation. Dryland. Treatment: Wl = 1 inch irrigation every seven days. W2 = 2 " ň " fourteen days. W3 = 3 " 11 11 twenty one days. N1 = Amm. nitrate 300 lbs/ac. N2 = " n 600 lbs/ac. N3 = " 11 900 lbs/ac.

Results:

5.3

Tons Cane per Acre.

1	Crop	WO	Wl	W2	₩3	Nl	N2	N3
	P	34,9	57.1	49.4	48.6	46.3	46.0	50.2
	lR	27.0	43.5	41.1	42.7	35.4	39.9	40.9
	2R	21.2	56.8	50.7	47.5	39.7	45.3	47.1
	3R	24.6	37.0	34.6	30.4	28.4	32.0	34.7

Plant Cane = L.S.D. (1%) 10.16 T.C.A.; (5%) 7.07 T.C.A.

Sucrose % Cane.

Crop	WO	Wl	W2	W3	Nl	N2	N3
Р	15.5	16.3	15.9	15.9	16.2	15.8	15.6
1R	14.4	15.4	15.6	15.8	15.3	15.4	15.2
2R	14.2	14.3	14.4	14.6	14.4	14.4	14.4
3₽.	13.6	14.9	15.3	15.1	15.2	14.5	14.5

- Page Two -

Catalogue No. 2.

	Crop	WO	Wl	W2	₩3	Nl	N2	N3	
417	Р	5.42	9.28	7.87	7.75	7•53	7.31	7.91	12,14
MIE	lR	4.07	6.67	4.31	6.77	5.46	6.18	6.32	9.12
59/60	2R	3.01	8,13	7.29	6.93	5.71	6.54	6.77	6,70
60/61	3R	3.38	5.49	5.29	4.59	4.31	4.29	5.08	7.57
			1						•

Tons Sucrose per Acre

9th May, 1966.

1

*** 5

•

SOUTH AFRICAN SUGAR INDUSTRY

AGRONOMISTS' ASSOCIATION

IRRIGATION TRIAL II

Catalogue No : This crop: Site: Altitude:	2 3rd Ratoon Jackson, Umhloti Valley 140'	<u>Soil Analysis:</u> <u>pH OM% Clay%</u> 5.81 5.42 47.31
Soil series: Design: Variety: Fertilizer:	Windermere clay loam Random Block N50/211 Urea. D. Supers. M.ofPot.	<u>р.р.т.</u> Р К Са Мg 92 225 1222 625
Water regime:	400 100 200 Irrigated	Age: 13 months. July 1965 - Aug. 1966 Rainfall: 30.88" Irrigation: See treatment

<u>Object</u>: To determine optimum water duties for Windermere soils at Tongaat.

Treatments:

ي يوجير هيو س

Dryland Control	- Wo
l" every 8 days	- Wa
l" every ll days	– Wb
l" every 14 days	+ Wc

These irrigated treatments were furthermore split for times of irrigation as follows :-

Wal	=	1" on 27.10.65	a nd	every	8	days	thereafter.
Wa2	=	1" " 29.10.65	н	11	8	H.	tt
Wa3	=	1" " 4.11.65	11	H	8	**	11
Wbl	=	1" on 27.10.65		T.F	11	**	f1
Wb2	=	1" " 30.10.65	11	EL C	11	11	11
Wb3	Ŧ	1" " 5.11.65	**	11	11	tt	rt.
Wcl	=	1" on 28.10.65	ŧ1	11	14	tt	11
Wc2	=	1" " 5.11.65	- 11	14	14	11	f1
Wc3	=	1" " 8.11.65	11	11	14	11	11

AMOUNTS OF IRRIGATION

₩о	NII	
Wal	32	ìnches
Wa2	32	11
Wa3	32	11
Wbl	23	††
Wb2	23	11
₩ЪЗ	23	11
Wcl	19	11
Wc2	18	ft
₩c3	\$ 17	11

RESULTS:

	TRE	ATM	ΕN	ΤS	T.C.A.
Wo	Dryland Co	ntrol			14.5
Wal	Irrigation	every	8	days	28.5
Wa2	11	tt	8	11	32.6
Wa3	11	ft	8	tt	32.6
Wbl	11	tt	11	11	29.7
Wb2	11	tt	11	11	24.5
Wb3	11	tt	11	11	25 .1
Wcl	H.	11	14	11	 24.6
Wc2	ft	ft	14	17	 24.8
Wc3	11	11	14	11	23.9

SUCROSE % CANE

	TRE	АТМ	ΕN	т	SUCROSE%
Wo	Dryland (Control			14.1
Wal	Irrigatio	n every	7 8	days	14.2
Wa2	tt	tt	8	11	13.9
Wa3	11	11	8	11	14.4
Wbl	11	11	11	11	14.4
Wb2	TT.	11	11	11	14.4
Wb3	tt .	11	11	н	14.2
Wcl	tt.	11	14	H	14.7
Wc2	tt	11	14	11	14.6
Wc3	11	11	14	H	14.8

TONS SUCROSE PER ACRE

					 6×16 .
	TREA	ТМЕ	N S	r	T.S.A.
Wo	Dryland Con	trol			 2.05
Wal	Irrigation	every	8	days	4.05
Wa2	FF	tt	8	11	4.54
Wa3	۲ı	tt	8	IJ	 4.68
Wbl	tt	11	11	11	 4.26
₩Ъ2	FT	11	11	11	3.54
Wb3	11	11	11	11	3.59
Wcl	f1	11	14	11	 3.61
Wc2	ft	11	14	tt	 3.61
Wc3	11	н	14	11	3.53

1

		· · · · · · · · · · · · · · · · · · ·				
	POPULATION	STALK	STALK	DIAMETER	(CMs)	YIELD
TREATMENT	AC. $\times 10^{-3}$	LENGTH (INCHES)	BOTTCM	MIDDLE	TOP	T.C.A.
Wo	35.1	46.3	2.55	2.48	2.57	14.5
Wal	46.0	64:7	2.54	2.56	2.72	28,5
Wa2	43.4	67.4	2.68	2.60	2.85	32.6
Wa3	44.5	67.4	2.71	2.62	2.80	32.6
Wbl	46.3	67.3	2.60	2.53	2.66	29.7
₩Ъ2	42.6	57.8	2.58	2.57	2.71	24.5
Wb3	41.8	62.5	2.60	2.56	2.73	25.1
Wcl	42.7	58.4	2.71	2.61	2.74	24.6
Wc2	43.7	56.7	2.74	2.63	2.78	24.8
Wc3	41.2	57.4	2.65	2.55	2.72	24.0

CROP MEASUREMENTS AT HARVEST

STATISTICAL ANALYSIS OF RESULTS

A. YIELD T.C.A.

.

ANALYSIS OF VARIANCE

Source	D.F.	S.S	M.S.
Blocks Treatments Error	3 11 33	189.2 1957.3 1712.5	177.9 51.9
Total	47	3859.0	
S.E. of a single L.S.D. of treatme	yield C.V. nt totals	= 7.2 = 13% = 39.9 (5%) = 52.5 (1%)	

TREATMENT COMPARISONS

Wa2	٧S	Wo	**	
Wa2	vs	WD3 NS	(almost	*)
Wa2	vs	Wc3 NS	Ç n	*)
Wa2	¥5	Wcl NS	("	*)
Wa2	٧S	Wc2 NS	(11	*)
Wa2	vs	Wb2 NS	("	*)

-

B. SUCROSE % CANE.

ANALYSIS OF VARIANCE

Source	D.F.	S.S.	<u>M.S.</u>
Blocks Treatments Error	3 11 33	1.02 2.91 4.45	.26
Total	47	8.38	
S.E. of Single Valve C.V. L.S.D. of treatment	totals	= 0.1161 = 0.81% = 2.0 (5%) = 2.7 (1%)	

TREATMENT COMPARISONS

Wc3	VS	Wa2	* *		Wb2	٧S	Wa2	*	
Wc3	vs	Wo	**		Wb2	vs	Wal NS		
Wc3	٧s	Wal	*		Wbl	vs	Wal NS	(almost	*)
Wc3	vs	Wb3 NS							
Wc3	vs	Wb2 NS	(almost	*)					
Wc3	vs	Wbl NS	(17	*)					
Wc3	vs	Wa3	*						

C. YIELD T.S.A.

ANALYSIS OF VARIANCE

Source	D.F.	<u>s.s.</u>	<u>M.S</u> .	
Blocks Treatments Error	3 11 33	4.22747 40.23160 36.36003	.3657 1.1018	
Totals	47	80.81910		
S.E. of a single L.S.D. of treatmo	yield C.V. ent totals	= 1.05 = 30% = 5.82 (5%) = 7.65 (1%)	·	

TREATMENT COMPARISONS

Wa3	V5	Wo	* *				Wal8	vs	Wo	* *
Wa3	vs	Wb2	NS	(al	most	*)	νљ2	VБ	Wo	*
Wa3	vs	Wb3	NS	("	*)	₩ЪЗ	٧s	Wo	*
Wa3	vs	Wc3	NS	(11	*)	Wcl	vs	Wo	*
Wa2	vs	Wo	* *				Wc2	vs	Чо	*
Wbl	vs	Wo	* *				Wc3	vs	Wo	*

CONMENTS:

This trial was laid down to measure the cane yield response to various water duties. Since it was felt that the time of initial application of water, i.e. the first irrigation, might influence the results by stipulating (by chance) a somewhat unrealistic preirrigation soil moisture deficit, it was decided to stagger the times of the first irrigation so that the whole range of possible soil moisture deficits likely to be encountered in the field would be covered by each treatment. This was achieved in the following way:-

- (a) Each water duty was resolved into a set cycle length, the three being 1 inch of irrigation every 8 days, 11 days or 14 days respectively.
- (b) Within each particular water duty there were three completely replicated sub-treatments which differed only as to the date of irrigation.
- (c) Estimated moisture balances were kept for all treatments, in order to see the range which might develop within a particular water duty. A 1:1 factor with class A pan evaporation was adopted for this once the crop attained full canopy, prior to which time suitable fractions were employed.

Whilst the differences in cane yield within any single water duty were not expected to be great, it was nevertheless felt that the split treatments would result in a better mean result per waterduty.

During the tenure of the experiment, a measure of irrigation control, adopted from field practice at Tongaat was exercised as follows:-

Whenever rains in excess of 0.5 inches were recorded, all treatments were delayed by a similar amount of time, which was decided on general soil moisture deficits. Usually, this delay amounted to 1 day per $\frac{1}{2}$ inch of rain recorded.

The overall response to irrigation was spectacular, averaging 89% again of the dryland yield. In discussing individual water duty results, the following assumptions have been made:-

l Cusec will irrigate 18 acres per day with 1 effective inch, resulting in 144 acres every 8 days; 198 acres every 11 days and 252 acres every 14 days for the respective treatments;

Approximately 20% of the total area under irrigation would not receive irrigation at all times for reasons such as drying-off, harvested and under a trash mulch, or fields for replanting and thus under land preparation. However, since this proportion of the total area is normally an increasing function with water duty, values at 15% for 8 days; 20% for 11 days; and 25% for 14 days have been used.

These assumptions therefore establish the water duties for each cycle time at 166 acres per cusec; 238 acres per cusec; and 315 acres per cusec respectively. The mean yield for the 166 acres per cusec water duty was 31.2 T.C.A., being a response of 16.7 T.C.A. or 115% again of the dryland yield.

The mean yield for the 238 acres per cusec duty was 26.4 T.C.A., being a response of 11.9 T.C.A. or 82% again of the dryland yield.

The mean yield for the 316 acres per cusec duty was 24.4 T.C.A., being a response of 9.9 T.C.A. or 68% again of the dryland yield.

It is interesting to depict these yield responses in graph form:

INCHES OF IRRIGATION

As can be seen, the response to irrigation is almost perfectly linear.

This result is in contrast to several others obtained on the same soil series at Tongaat, where the trend has been a decreasing response to irrigation with decreasing water duties, (decreasing area to be irrigated per unit quantity of water). It is believed that this difference in trend is explicable on three accounts. Firstly, due to the very severe drought, natural rainfall was probably nearly equally effective on each water duty, instead of being decreasingly effective with decreasing water duty. Secondly, the soil profile on this experiment is extremely shallow, and thus the crop was better able to utilise more frequent irrigations, and thus put on more growth. Thirdly, it has been shown over several

7/...

5 18 6

- 7 -

crops that soil moisture availability effects on this site were pronounced, i.e. sugarcane responded markedly to frequent but light applications of water. Thus it should be stressed that although the yield response curve was very nearly linear, these data were obtained during a most severe drought year, and it would be expected during normal years of rainfall that a curvilinear response curve be obtained.

In terms of total cane yields, the assessment of these water duties can be considered as follows:

A farmer has 315 acres of land, and 1 cusec of water available for irrigation. His choice of various water duties results in the following total cane yields from the farm:

Wa	166	acres	@	31.2	T.C.A.	÷	149	acres	@	14.5	T.C.A.	=	7,340	tons	cane.
wь	238	11	@	26.4	11	+	77	11	@	14.5	tt	=	7,400	11	11
Wc	entir	e area	2 1	.e.	315 acre	es			@	24.4	11	Ξ	7,686		11

The farmer thus obtains his highest yield with the highest water duty, and since it can be shown from irrigation economics that the operating costs of irrigation schemes decrease rapidly with increasing water duties, then the high water duty becomes even more remunerative.

In connection with other yield data, actual yield differences within each water duty correlate well with estimated mean soil moisture deficits on the days immediately prior to irrigation.

Mean estimated soil moisture deficits which ocurred on the days immediately prior to irrigation

TREATMENT	AIETD	ESTIMATED SOIL MOISTURE DEFICIT INCHES						
	T.C.A.	ENTIRE SEASON	SUMMER ONLY	WINTER ONLY				
Wal	28.5	3.13	1.98	4.85				
Wa2	32.6	2.99	2.25	4.23				
Wa3	32.6	2.76	1.83	3.95				
Wbl	29.7	4.94	2.62	8.15				
Wb2	24.5	5.45	3.35	8.72				
Wb3	25.1	5.68	2.89	9.30				
Wcl	24.6	6.87	3.30	11.32				
Wc2	24.8	5.67	3.25	9.47				
Wc3	23.9	6.56	3.74	10.58				

It is quite interesting to note that the <u>mean</u> estimated soil moisture deficit within any particular water duty can vary by almost 0.4" in an 8 day cycle, to 0.75" in an 11 day cycle, to 1.20" in the 14 day cycle. On occasions, the individual estimated soil moisture

8/...

deficits varied by 0.63" in the 8 day cycle, to 1.20" in the 11 day cycle, to 3.06" in the 14 day cycle. These data indicate that a fairly wide range in estimated soil moisture deficits can occur by chance even within water duties, and through their influence on yield suggest that reliable water duty experiments should include some provision for gauging this effect.

The sucrose % cane results indicate a general increase in sucrose content of irrigated canes, compared to dryland cane, which has generally been the case in irrigation experiments.

The treatment means are :

وسط الليثي

Wo	=	14.1%
Wa	z	14.2%
Wb	=	14.3%
Wc	=	14.7%

These data of course substantiate the evidence in favour of higher water duties.

The crop measurements at harvest once again showed a very close correlation between stalk length and yield $(r = 0.93^{***})$ of cane per acre. Plant population was significantly increased in all irrigated plots compared to dryland figures, but there was no real pattern between water duty treatments. Irrigation has also increased stalk diameters in general, with most of the difference occurring at the top of the stalk.

J.N.S. H1LL.

Maidstone. 6th October, 1966. JNSH/JT