SOUTH AFRICAN SUGAR INDUSTRY

AGRONOMISTS' ASSOCIATION

VARIETY TRIAL

Catalogue No.: 106	Soil Analysis:
Code: 2200/3	pH (CaCl ₂) 6.6
This Crop: Plant Site: Experiment Station	Clay % 2 19
Altitude: 1350'	Cond. (mmho/cm.) .120 P_O_ (p.p.m.) 12
Soil: P E 1, Sandy Clay Loam.	P ₂ O ₅ (p ₂ p ₂ m ₂) 12 Ex. K. (m.e. %) 0.90
Design: 9 x 4 Randomized Blocks Fertilizer: N P ₂ O ₅ K ₂ O	Ex. Ca. (m.e. %) 8.4
Level 140 150 50	Ex. Mg. (m.e. %) 3.2
Carrier Urea Double supers Muriate	Age: 11.6 months (15/12/67 - 3/12/68)
.	Rainfall on Crop: 10.9 in. Irrigation on Crop: 60.5 in.

Results:

VARIETY	TONS CANE PER ACRE	SUCROSE % CANE	TONS SUCROSE PER ACRE	STALK COUNT 1000s/ACRE	% LODGING
N:Co.376	77.4 (2)	12.7/	9.81	66.4	56
Q•70	77.0 (3)	12.6	9.63	38.6	70
N.52/219	73.1 (4=)	13.1	9•55	37.8	30
Q.63	68.3 (6)	13.8	9.39	35.⁴4	31
Co.775	73.1 (4=)	11.6	9.54	42.0	16
Co.678	85.2 (1)	10.0	8. 48	36.3	91
Q.57	51.0 (9)	13.6	6.96	25.7	9
Co.684	61.6 (7)	11.1	6.86	41.8	. 38
M.383/41	60.8 (8)	11.2	6.83	50.9	80
C.V. %	6.7	8.9	10.3	5.6	30.6
L.S.D. 5%	6.8	1.6	1.27	3.4	22
1%	9•3	2.1	1.73	4.6	29

NOTES:

N:Co.376 produced the highest yield of sucrose per acre; Q.70, Q.63 and N.52/219 were all very close behind. Of these four varieties, Q.63 and N.52/219 had higher sucrose, and also lodged far less than the other two varieties. N:Co.376 had an unusually high stalk population in this trial (66,000 at harvest). There was little difference in stalk population between the other 3 varieties.

Co.678 produced the highest cane yield, but sucrose content was very low. Co.775 also gave moderately good yields.

Q.57 was severely affected by smut, (1500 whips/acre) while leaf scald attacked Q.63 fairly severely (700/acre) during the last three months before harvest. N:Co.376 produced 6.7 tons cane/acre month.

SOUTH AFRICAN SUGAR ASSOCIATION

AGRONOMISTS ASSOCIATION

VARIETY TRIAL (2200/3/1R)

Catalogue No:	106		Soil Ana	lysis:	
This crop:	lst Ratoon		pH (CaCl		6.4
Site:	Experiment	Station	Clay %		20
Altitude:	1350		Cond.	(1 : 5)	212
Soil:	PE 1 sandy		P ₂ 0 ₅	(p. p.m.)	18
Design:	9×4 Rando	mized Blocks		(0/)	o he
Fertilizer:	И	P ₂ 0 ₅	Ex. K	(m. e. %)	0.45
Level:	160	75	Ex. Ca	(m. e. %)	6.2
Carrier:	Urea	Double supers	Ex. Mg	(m. e. %)	2.9
Rainfall on cr	op:	17.50 in.	Ex. Na	(m. e. %)	0.8
Irrigation on	crop:	48.00 in.	Age:	11.6 months (5/12/68-2)	

Variety	T.C.A.	E.R.S. C	T.E.R. S.A.	Stalk Count '000s/ac	% Lodging	Sucrose % Cane		Purity %	Smut Whips per acre
N:Co.376 N.52/219 Q. 63 Q. 70 Co. 775 Co. 678 M.383/41 Q. 57 Co.684	67.4 59.8 57.3 57.8 60.2 67.1 55.9 49.6 53.6	12.6 13.9 14.2 13.5 12.4 11.1 13.2 13.4 11.5	8.51 8.39 8.16 7.73 7.48 7.45 7.37 6.66 6.19	68.7 45.1 44.7 41.3 47.7 43.9 50.1 33.2 48.8	74 96 87 84 66 95 98 41	14.5 15.8 16.0 15.3 14.5 13.2 15.1 15.2 13.8	13.1 11.7 12.6 12.4 11.2 14.4 12.4 12.2 15.8	88.4 90.2 88.9 84.8 86.0 90.0 86.0	270 0 0 0 0 0 10 5870 10
C.V. %	8.2	6.7	10.3	4.8	17.1		8.4	-	
L.s.d. <i>5%</i> 1 %	7•0 9•5	1.2 1.7	1.13 1.54	3•3 4•4	20 27	-	1.6 2.1	-	<u>-</u>

Note

E.R.S.C. (Estimated Recoverable Sugar % Cane) = S - 0.451 (B-S) - .077 F, where S = Sucrose, B = Brix & F = Fibre contents of cane obtained direct analysis. T.E.R.S.A. = Tons Estimated Recoverable Sugar per Acre.

Conclusions N:Co. 376 produced the highest yields of sugar per acre, closely followed by N.52/219 and Q. 63, these two varieties giving the highest sucrose content and E.R.S.C. Lodging was severe in all the loading varieties. N.52/219 had a low fibre content, and was resistant to smut. to smut. N:Co. 376 was moderately infected with smut. Q. 63 was again severely infected with leafscald, while M.383/41 showed the leaf stripe symptoms of leaf scald in one plot. Yellow wilt was observed in Co.678 and M.383/41. Leaf galls (pseudo Fiji) were observed in Co. 678, Co.684, Co.775 and M.383/41. The leaf stripe symptoms of gumming were observed in N. 52/219, Q. 57 and Q. 63. Some pokkah boeng was evident in N:Co.376.

Results

Table 1. Yield and crop characteristics at harvest.

	Treatment	Cane (t/ha)	ERS % cane	ERS (t/ha)	Cane (t/ha /100 mm	Stalk counts X10 ⁻³ /ha	Stalk mass kg	Stalk height cm
1.	Top dress P	107	11,7	12,4	5, 2	105	1,02	216
2.	Residual P	110	11,3	12,4	5,3	109	1,02	216
3.	Residual P	113	11,2	12,6	5 , 4	112	1,01	216
4.	Top dressed P	123	11,4	14,1	6,0	.115	1,07	229
5.	Residual P	116	10,9	12,7	5 , 6	111	1,05	223
6.	Top dressed P	121	11,2	13,5	5,8	118	1,02	221
	c.v.%	4,9	3,7	4,5		4,6	5,0	-
	S.E.	2,5	0,2	0,3	,	2,7		·
	L.S.D. (0,05)	7,4	0,6	0,8		6 , 7		
	(0,01)	10,0	0,8	1,0		9,1		

Table 2. Third leaf analysis with time (months).

	l	: 11. : 4,	.2.77. 7 m	•		1	: 10. : 5,9		•		ı	: 15. : 7 m			
	N%	P%	K%	C a %	Mg%	N%	P%	K%	Ca%	Mg%	N%	P%	к%	Ca%	Mg%
1. Top dressed P	2,25	0,19	1,63	0,35	0,20	2,08	0,18	1,42	0,31	0,23	2,06	0,19	1,26	0,34	0,27
2. Residual P	2,26	0,19	1,59	0,32	0,19	2,13	0,18	1,40	0,32	0,23	2,05	0,18	1,23	0,34	0,27
3. Residual P	2,31	0,20	1,66	0,33	0,19	2,09	0,18	1,35	0,31	0,26	2,02	0,18	1,24	0,33	0,27
4. Top dressed P	2,31	0,20	1,67	0,33	0,18	2,07	0,18	1,38	0,32	0,26	2,04	0,19	1,25	0,33	0,28
5. Residual P	2,30	0,19	1,62	0,34	0,19	2,10	0,17	1,40	0,31	0,23	2,05	0,19	1,25	0,34	0,28
6. Top dressed P	2,34	0,20	1,67	0,34	0,19	2,09	0,18	1,41	0,31	0,22	2,08	0,19	1,25	0,35	0,28

Table 3. Growth measurements with time (months).

	Date: 11.2 Age : 4,7		Date: 15. Age : 13		Date: 18.10.77. Age : 13 m	
Treatment	Stalk counts X10 ⁻³ /ha	Stalk height cm	Stalk counts X10 ⁻³ /ha	Stalk height cm	Stalk counts X10-3/ha	Stalk height cm
1. Top dressed P	149	32	162	73	140	100
2. Residual P	186	33	177	73	144	104
3. Residual P	162	32	177	73	146	107
4. Top dressed P	214	37	188	90	154	120
5. Residual P	195	35	176	85	152	114
6. Top dressed P	196	34	177	83	149	110

Comments on results

2. There is statistical evidence of highly significant yield responses to broad-cast supers applied at planting.

ERS % was reduced but not significantly.

	Response	S.E. of diff.
Cane t/ha	118 - 108 = 10	± 2,17
ERS %	11,2 - 11,5= -0,3	± 0,16
ERS (t/ha)	13,2 - 12,4= 0,8	± 0,23

The response to broadcast supers was evident in increased stalk population and stalk height from a young age.

There is no statistically significant difference in response to the two levels of broadcast supers. The high rate of broadcast supers decreased yield slightly.

	l½ t supers/ha	3 t supers/ha	Response	S.E. of diff.
Cane (t/ha)	136	134	2	± 2,50
ers %	11,3	11,0	0,3	+ 0,19
ERS (t/ha)	13,3	13,1	0,2	± 0,26

4. Top dressing the plant crop broadcast supers treatments, with additional supers has increased yields and sucrose content.

Response to top dressing with single supers

	F.A.S. (In furrow)	l½ t supers Broadcast	3 t supers Broadcast	S.E. of diff
Cane (t/ha)	-3	10	5	± 2,5
ERS %	0,4	0,2	0,3	+ 0,19
ERS (t/ha)	0	1,5	0,8	+ 0,26

The response to top dressing the $l\frac{1}{2}$ t level of broadcast supers was evident in increased stalk population and height from a young age.

- 5. Third leaf P values did not reflect the different levels of P applied. The levels of other nutrients were adequate with the N level being particularly high.
- 6. Soil P values do not reflect treatments.
 Aluminium is approaching toxic levels for this soil.
- In terms of cane yields, ratoon crop yields are slightly lower than those of the plant crop.

	Plant crop	<u>lst Ratoon</u>
Cane (t/ha/m)	5,6	5,3
Cane (t/ha/100 mm rainfall)	8,4	5, 6

END/VSJ. 12th September, 1978.

File

: 14. 4. 5.

Folio No.: 106

SOUTH AFRICAN SUGAR INDUSTRY

AGRONOMISTS' ASSOCIATION

Phosphate Levels x Soil P.D.I. - Midlands (Glenside)

Code

: FT8P/74/Rl

Catalogue No.

919

This crop

lst Ratoon

<u>Site</u>

: Glenside

A71'1 7

· GIONDIAC

<u>Altitude</u>

: 1 000 m

Soil series

Inanda

<u>Design</u>

: Incomplete Latin square

Variety

: NCo 293

Fertilizer

: N = 140 kg/ha as urea

P - See treatments

K - 170 kg/ha as KC1

Water regime

Rainfed.

Soil analysis at the end of the 1st ratoon.

Hq	P.D.I	Clay %
5,1	0,06	33

Treatment:

ppm

				ppm		
	P	K	Ca	Mg	Al	Zn
1. 2. 3. 4. 5.	16 20 18 26 16 19	44 50 45 42 41 42	268 219 175 270 269 222	55 72 56 66 69 50	47 50 58 46 45 59	3,3 3,6 3,1 2,6 2,2 2,6

Rainfall: 2 044 mm (gross)

Age: 21,7 m (14.9.76 - 6.7.78)

Object

To measure 1st ration responses to treatment with phosphate applied by various methods and rates in the plant crop on soils of different P fixing characteristics and to assess the most efficient way of meeting the P requirements of cane grown on these soils.

Treatments

Levels of phosphorus in kg/ha applied as single superphosphate (8,3% P).

	Plant	lst Ratoon			
	In furrow	Broadcast	Top dressed		
1.	98	-	50		
2.	196	_	-		
3.	98	125			
4.	. 98	125	50		
5.	98	250	-		
6.	98	250	50		

SOUTH AFRICAN SUGAR INDUSTRY

AGRONOMISTS' ASSOCIATION

VARIETY TRIAL 2200/3/2R

Catalogue No: 106

This crop: 2nd Ratoon

Site: Expt. Stn, Chiredzi

Altitude: 1350'

Soil: P E 1 sandy loam

Design: 9 x 4 randomized blocks

Fertilizer: N p₂0₅

Level 160 75

Carrier A/Nitrate Single

supers

Rainfall on crop: 15.1 in Irrigation on crop: 58.0 in

Results:

······································	
рН	4.8
Cond. (mmho/cm)	187
P ₂ O ₅ (ppm)	6 8

Soil analysis:

P₂O₅ (ppm) 68 Ex. K (m.e.%) 0.48 Ex. Ca (m.e.%) 4.17 Ex. Mg (m.e.%) 1.93 Ex. Na (m.e.%) 0.28

Age: 12.5 months (24.11.69 - 7.12.70)

Variety	T.C.	E.R. S. % C.	T.E. R.S. A.	Stalk count '000s/ acre	% Lodg- ing	2000	Fib- re % cane	Brix % cane	Purity %	Sucrose yield	Smut whips/ acre	Stalk Dia- meter (mm)
Q 70 NCo 376 Q 63 Co 775 N 52-219 Co 678 M 383-41 Co 684	70.9 58.0 64.4 56.6 71.3 53.3 56.4 45.4		9.03 8.14 8.09 7.77 7.55 6.55 6.16	69.1 44.3 46.1 48.4 50.2 51.4 53.0	98 72 99 100 98 100 100 98 74 12 16 21	14.7 15.9 14.4 15.5 12.8 14.4 13.7	13.2 13.1 11.8 11.2 14.6 12.3 14.5 11.8 4.6	1.1	87.0 89.3 87.4 89.0 84.8 86.7 85.8	10.22 10.44 9.22 9.27 8.75 9.11 7.69 7.73 6.95	0 325 30 15 0 37 0 103 13961	27.2 26.5 25.7 24.6 27.9 24.1 22.8 24.5 5.8 2.1 2.9

Conclusions

Q 70 and NCo 376 gave highest yields of sugar per acre. Q 70 is highly resistant to smut but unfortunately lodges severely at an early age. The next varieties were Q 63 (highly susceptible to Leaf Scald) Co 775 and N 52-219. The latter was disappointing, but his was partly due to one plot which gave inexplicably low yields. However, it may possibly be evidence of declining vigour in ratoons. Q 57 has become very highly infected with smut, and probably because of this, is now giving the lowest yields of sugar/acre.

SOUTH AFRICAN SUGAR INDUSTRY

AGRONOMISTS' ASSOCIATION

VARIETY TRIAL 2200/3/3R

Catalogue No.

: 106

This crop

: 3rd Ratoon

Site

: RSA Experiment

Station, Chiredzi

Soil

: P E l sandy loam

Altitude

: 410 m

Design

: 9 x 4 randomised blocks

Fertilizer

N

P₂0₅ 84

179

Carrier

Rainfall on crop :

Irrigation on crop:

1300 mm

Ammonium nitrate Single supers

426 mm

Soil analysis: pH (CaCl₂) 4,8 Clay % 16 Cond. (mmho/cm) 187

 P_2O_5 (ppm)

68

Ex. K (m.e. %) 0,48 Ex. Ca(m.e. %) 4,17 Ex. Mg(m.e. %) 1,93

11,9 months Age:

(11/12/70-9/12/71)

RESULTS

Variety	тсн	ERS % C	TERSH	Stalk Count '000s/ ha	% Lodging	Sucrose % Cane	Fibre % Cane	Brix % Cane	Purity %	Smut Whips/ ha
NCo 376	132,5	13,40	17,79	201,6	40	15,4	13,7	17,6	87,8	839
Q 63	114,4	14,63	16,75	125,4	92	16,8	13,4	19,2	87,5	73
N 52-219	121,0	13,65	16,55	119,7	86	15,9	10,9	19,0	83,6	0
co 678	133,8	12,20	16,31	120,3	100	14,3	14,4	16,5	86,8	55
ହ 70	118,4	13,74	16,26	115,7	85	16,1	11,8	19,2	83,8	0
Co 775	119,4	13,46	16,08	121,8	91	15,4	12,0	17,7	87,1	0
M 383-41	107,2	12,96	13,89	142,4	99	15,0	12,9	17,2	87,1	0".
Q 57	87,3	13,70	11,91	94,9	42	15,6	12,9	17,5	89,1	48620
Co 684	98,0	11,92	11,66	147,6	98	14,2	14,7	16,9	84,6	237
C.V.%	6,7	6,6	9,0	5,1	21,0	4,3	6,8	3,3	4,8	- ·
L.S.D. 5%	11,2	1,27	2,00	9,9	25	1,0	1,3	0,8	6,0	•
1%	15,2	1,72	2,72	13,4	34	1,3	1,7	1,2	8,2	- (A)

NCo 376 gave the highest yields of sugar/ha, with very little difference between Q 63, N 52-219, Co 678, Q 70 and Co 775. Q 63 gave the highest sucrose % cane and E.R.S. % C. NCo 376 had an exceptionally high stalk count. N 52-219 had the lowest fibre.

TCH

Tons cane per hectare

Estimated recoverable sugar % cane

=

TERSH = Tons estimated recoverable sugar per hectare