SOUTH AFRICAN SUGAR INDUSTRY AGRONOMISTS¹ ASSOCIATION.

IRRIGATION LEVEL x TRASH MANAGEMENT x N-CARRIER TRIAL 4200/1.

Catalogue No.: 105	Soil Analysis:	
Code No.: 4200/1 This crop: Plant	pH (CaCl ₂)	6.4
Site: Experiment Station, .	Clay %	18
Chiredzi. Altitude: 1350'	Cond. (mmho/cm.)	.105
Soil: PE 1 sandy clay loam	P ₂ O ₅ (p.p.m.)	12
<u>Design</u> : Split plot <u>Fertilizer</u> : N P ₂ 0 ₅ K ₂ 0	Ex. K (m.e. %)	0.85
$\frac{2^{-2}}{12^{-2}} = \frac{2^{-5}}{150} = \frac{2^{-5}}{12^{-5}}$ Level 140 150 50	Ex. Ca (m.e. %)	8.6
Carrier Urea Triple Supers Muriate	U	3.1
<u>Rainfall on crop</u> : 23.6 in. <u>Age</u> : 12.2 months (24/11/66 - 29/11/67)	Min. N) Initially p.p.m.) after incubat:	12 ion 24

<u>Object</u>: To determine the effect of various irrigation regimes on cane yield, sucrose % cane, smut susceptibility and stalk count. To determine the effects on yield of burning vs. a trash blanket, and any interaction with level of irrigation. To compare sulphate of ammonia with urea as N carriers.

<u>Results:</u>

Irrigation Treatments	Wl	W2*	W3	W4	W5	wб	C.V. %	L•s•d• 5%	L.s.d. 1%
Pan Factor	1.0	1/.5	.84	. 68	•53	•37	-	-	-
Irrigation applied (in.)	57.7	45.7	49.7	41.7	35.7	29.7	-	-	-
Total precipitation (in.)	81.2	69.2	73.2	65.2	59.2	53.2	-	-	-
Yield tons cane/acre	62.9	51.1	62.0	51,2	44,1	40.6	5.3	4.0	5.5
Sucrose % cane	14.1	13.5	14.0	14.3	15.1	14.0	5.5	0.7	0.9
Yields tons sucrose/acre	8.88	6.90	8.65	7.31	6.65	5.70	7.3	0.67	0.93
Stalk count ('000/acre)	53.5	53.5	52.2	54.1	52.1	54.8	4.0	3.4	4.8
5 Lodging	61	1	34	4	0	0	95	15	21
Stalk height (ft.)	8.6	7•4	8.4	7.8	6.5	6.0	-		
Tons cane/in. irrig. water	1.09	1,12	1.25	1.23	1.24	1.37	· _	-	• 🛥
Tons cane/in. total water	0.77	0•74	0.85	0.79	0.74	0.76	-	-	-
lb sucrose/in. irrigation	308	302	348	351	373	384	**	-	-

* In Treatment W2, 1.0 x Pan was applied in summer and 0.5 x Pan in Winter.

Omitting W2, a mean increase was obtained of 0.89 tons cane or 0.12 tons sucrose per inch irrigation applied above the lowest level (29.7 in.). In addition to highly significant linear functions for both cane yield and sucrose yield (P>001), there was a highly

The response of cane yield to irrigation was very large; yields increased with increasing levels of irrigation up to $.84 \times Pan$. The yields of the 1.0 x Pan treatment were no better than those of $0.84 \times Pan$, partly because of the greater lodging in the 1.0 x Pan treatment. Sucrose % cane and E.R.S.C. were significantly reduced at both extremes of irrigation, with the optimum level at 0.68 x Pan. Brix and Purity followed the same trends, while fibre content increased steadily with increasing levels of irrigation. It is clear that a moderate degree of stress produces the highest recoverable sugar % cane.

Tons recoverable sugar per acre was highest with 0.84 x Pan, while even 0.68 x Pan gave as high yields as 1.0 x Pan.

The most economic use of water, expressed as tons cane or <u>lb. sugar</u> <u>per acre in.water</u> (irrigation or total) was consistently obtained with the 0.68 x Pan treatment. This was during a crop which received 17.8 in. rain. During the 1st ratoon, when only 7.3 in. effective rain was recorded, the most economic use of water was obtained with 0.84 x Pan.

Stalk count increased significantly with increasing levels of irrigation, from 60,000/acre in the driest to 65,000 in the wettest treatment.

Lodging increased sharply with increased levels of irrigation, as did stalk height.

Irrigation had no effect on the incidence of smut.

Although there was relatively little <u>flowering</u>, the wetter treatments had more flowers than the dry ones.

Burning vs. Trashing

IRRIGATION x TRASH MANAGEMENT

	I	RRIGAT	ION LEV	ELS					
Irrigation Treatments	W1	₩3	W2	W4	₩5	W6	Mean	Lsd(N 5%	ieans) 1%
Pan Factor (Net) Irrigation applied (in.) Total precipitation(in.)	1.0 58 75.8	.84 48 65.8	.84/.6 44 61.8	.68 36 53.8	•53 26 43•8	•37 18 35•8	-		-
		TONS	CANE/ACR	E					
Burning Tashing	63 .2 59 . 2	61.9 62.7	60.0 59.6	52.9 58.3	37.3 42.4		49.1 52.4	2.2	2.9
E.s.d. Body of Table (5%) EST			1 ERABLE S	UGAR %	CANE				
Burning Trashing	12.2 11.2	12.6 12.3	13.4 12.6	13.6 13.0	13.2 13.0	12.2 12.5	12.9 12.4	0.3	0.4
L.s.d. Body of Table (5%) TONS		(1%) O ATED R	-9 ECOVERAB	LE SUG	AR/ACR	E			
Burning Trashing	7.65 6.63	7.73 7.73	8.03 7.53	7.14 7.56	4.94 5.49	2 .35 4.08	6.31 6.50	0.31	0.41
L.s.d. Body of Table (5%) 0.75 STAL		1.01 T ('000s	/acre)					<u></u>
Burning	69.2	69.7	68.0	67.7	66.4	61.4	67.1	1.4	1.8

60.7 59.1 61.2

59.3 58.9 60.3 59.9

L.s.d. Body of Table (5%) 3.3 (1%) 4.4

Trashing

ţ

د ج بر بر بر بر

 $\mathcal{M}_{\mathcal{V}}$

12 63

45 45

i

•

i. A

1

Ţ

. ;

;

SOUTH AFRICAN SUGAR INDUSTRY

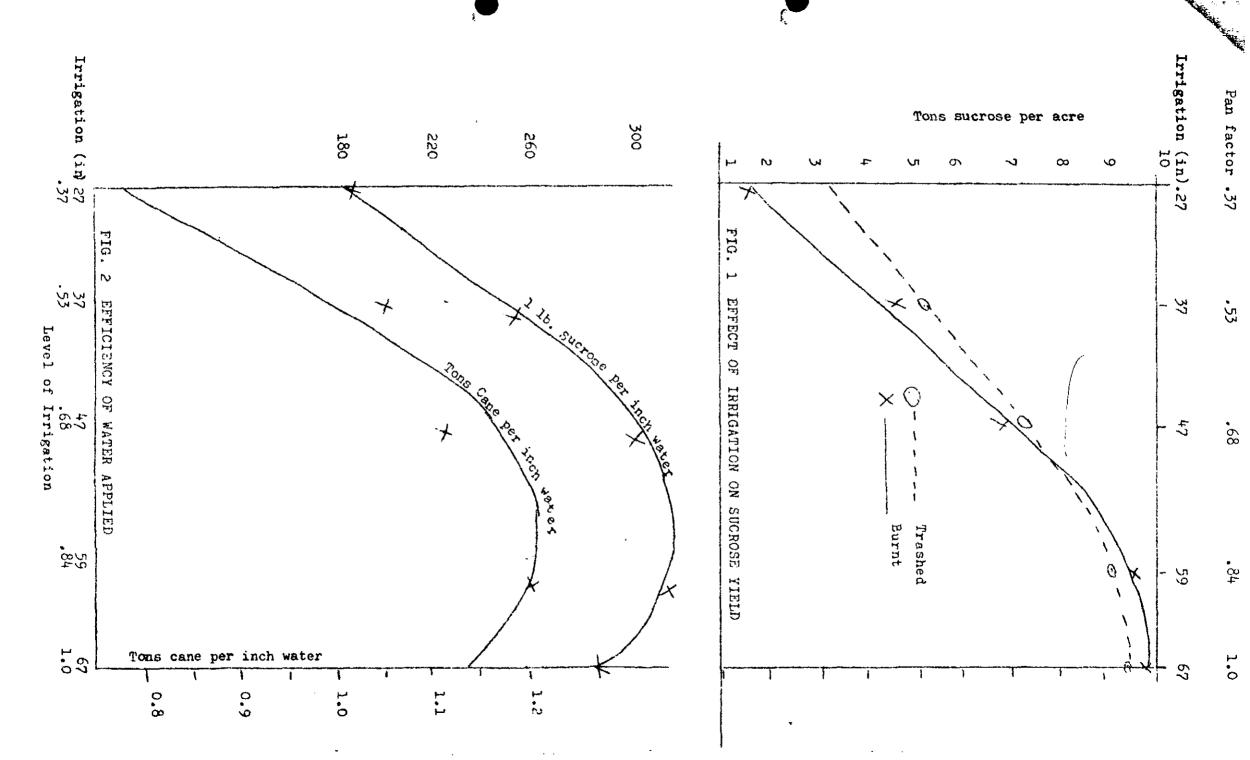
AGRONOMISTS' ASSOCIATION

IRRIGATION LEVEL x TRASH x NACARRIER TRIAL (4200/1/1R)

ţ			
1	Catalogue No:	105 At Soll Analysis:	
• •	This crop:	let Ration (CaCl2)	
	Site:	Experiment Station Clay &	
	Altitude:	1350 Cond. (mono/cm) .105	ï
1	<u>Soil</u> :	PE-1 sandy clay loam	
	Design:	Split blot	
	Fertilizer:	$N = P_2 O_5$	•
	Level		÷
1	Carrier		
			3
	TOP OF THE TOP OF TO	Effective 7.34 in.	
i.	A	111 /Cn of /12/CQN	F A

Age: 11.9_months (29/11/67-25/11/68

Object:


To determine the effect of various irrigation regimes on cane yield, sucrose % cane, smut susceptibility and stalk count. To determine the effects on yield of burning vs. a trash blanket, and any interaction with level of irrigation. T To compare sulphate of ammonia with urea as N carriers.

Results: Irrigation level

			1	· · · · · · · · · · · · · · · · · · ·	· 第二日	<u>и</u> , †	la fa		<u>. 1949</u>) conta	
	Irrigation Treatments	Wl	W2*	W3	W4	₩5	W6	c.v.	L.s.d.	L.s.d. 1%	
	Pan Factor	1.0	1/.5	.84	468	•53	37	¥ - 1			
L L se F	Irrigation applied (in)	67.0	57.0	59.0	47.0	37.0	27:0				
	Total precipitation (in)	78.0	68.0	70.0	58.0	48.0	38.0				
	Yield tons cane/acre	75.7	62.2	71.6	52.2	38.5	20.7	1 8.1	. 3.7	5.1	
	Sucrose % cane	12.8	12,2	13.1	13.7	13.0	11.8	6.2	0-9	1.3	
	Yield tons sucrose/acre	9.66	7-58	9.39	7.14	4.99	2.48	10:7	0.70	0.98	
نۍ ا	Stalk count (*000/acre)	68.7	68.3	65.9	64.2	63.0	60.1	4.8	3.1	4.2	
	% Lodging	ູ 71	1	,52			- D	ί.	14.4	21	- 【八 [1]
ł	Smut whips per acre		' K		199	. 1	A*	网络 人名	152	210	
¥,	Stälk height (ft).	Ĩ,		7.8				n			
	Tons cane/in. irrig.Water			1.21	1 I N I N			1911 - 1918 1919 - 1918			
К.	Tons cane/in. total water			1.02				1. A. A.			
	lb/sucrose/in: irrigation	288				N d		e -			
	lb sucrose/in. total water	240	225	268	, 245	208	131	-			

*In treatment W2, 1.0 x Pan was applied in summer and 0.5 x Pan in Winter. The response to irrigation was very large, because of the very dry season (of the total of 11.02 in. rain during the crop, 3.68 in. felt during

the last fortnight before harvest and may be regarded as ineffective)

.

-----⁻⁻⁻⁻ - († C. 7 ð 1 ية - بر مين من من م

S. of Lord

is apparent from Fig. 1 that yields increased steadily up to an application of 59 in. (0.84 x Class 'A' pan evaporation), with only a slight increase from the additional water applied in the 1.0 Class 'A' pan treatment. The response in yield per inch of water applied is shown in Fig. 2, and it appears that maximum efficiency was obtained at somewhere between 0.68 and 0.84 pan or about 54 inches water applied or 65 in. water gross. The sharp drop in efficiency with lower water application is noteworthy; this is due to the great reduction in canopy caused in the highly stressed treatments; thus each irrigation was followed by a period of renewal of foliage before additional cane could be formed. The driest treatment produced less than half the yield per inch of total water (irrigation + rainfall) compared with the optimum treatment.

Sucrose content was also significantly affected by irrigation; both the wettest and the driest treatments producing significantly lower sucrose content than the optimum (0.68 pan). The former was evidently not dry enough, while in the latter treatment desiccation presumably resulted in destruction of sucrose.

The wet treatments produced a significantly higher stalk population than the dry treatments, whilst lodging increased markedly with the wet treatments. There was no consistent effect of irrigation on sumt count.

Burning vs. Trashing

TONS CANE/ACRE

	Wl	W2	W3	W4	₩5	W6	Mean	L.s.d. 5%	(Means) %
Eurning	77.0	63.5	71.9	49.4	36.4	14.1	52,1	1.8	2.4
Trashing	74.3	61.0	71.3	55.0	40.5	27.3	54.9		

L.s.d: Body of Table (5%) 4.3 (1%) 5.8

SUCROSE % CANE

, 						
Burning	12.8 12.	5 13.3	13.9 13.0	11.4 12.8	0.3	0.4
Trashing	12.7 12.	0 12.9	13.5 12.9	12.1 12.7		

L.s.d: Body of Table (5%) 0.8 (1%) 1.1

TONS SUCROSE/ACRE

						······	فكري وفارك المداد			
- E	9.87	7.85	9.54	6.87	4.77	1.62	6.76	0.30	0.40	i
•	9.44	7.31	9.22	7.41	5.21	3.35	6.99			
ار <u>میں ایک میں ایک اور اور ایک رواز اور اور ایک میں میں میں میں میں میں میں میں میں میں</u>								والمعاد الالبياسة المتني والفراقي التراي		

L.s.d: Body of Table, (5%) 0.74 (1%) 0.98

STALK COUNT '000s/ACRE

Burning	71.3	73.0	68.9	66.1	64.1	58.7	67.0	1.3	1.7
Trasting	66.1	63.5	63.0	. 62.3	61.9	61.6	63.1		
	L.s.d	: Bod	y of I	able (5%) 3.	1 (1%)	4.2	······································	

- 2 -

LODGING %

	Wl	W2	₩3	W4	₩5	W6	Mean	L.s.d. 5%	(Means) %
Burning Trashing	69 73	25 27	57 48	1 0	0 0	0 0	25 25	7	9

L.s.d: Body of Table (5%) 17 (1%) 22

SMUT WHIPS/ACRE

	1	286	378	175	240	258	98	131
Trashing 314	129	443	185	268	120	243		•

L.s.d: Body of Table (5%) 241 (1%) 320

The above table and Fig. 1 show the effects of burning compared with trashing at the various levels of irrigation. It is apparent that with increasing moisture stress, there was a marked advantage of conserving trash, with a yield increase of some 13 tons cane/acre. In addition, the sucrose content of stressed cane was improved by trashing. This resulted in the sucrose yield per acre of trashed plots at 0.37 Pan factor being over twice that of the burnt plots. In the wettest treatments, however, the burnt plots tended to outyield the trashed plots, probably because the stalk population was higher. With a 0.84 Pan factor, the yields of the burnt and trashed treatments were very similar, and it appears that the crossover point between burning and trashing occurs at the optimum economic water level i.e. between 0.68 and 0.84 x Pan, (see Figs. 1 & 2).

Trash management had no effect on lodging or on smut infestation. . Urea vs. Sulphate of Ammonia

····

.

·	Urëa	Sülphate of Ammonia	C.V. %	L.s.d. 5%	L.s.d. 1%
Tons cane/acre	52.5	54.4	8.1	1.8	2.4
Suprose % cane	12.9	12.6	6.2	0.3	0.4
Tona sucrose/acre	6.86	6.88	10.7	0.30	0.40
Stalk count('000/acre)	65.4	64.7	4.8	1.3	1.7
Lodging %	21	29	67	7	9
Height (ft).	5.9	5.9	-	-	-
Sree count/acre	255	246	9 6	98	131 -

Urea produced significantly lower yields of cane with significantly higher sucrose content, to give almost identical yields of sucrose/acre with sulphate of ammonia. The lodging was significantly lower with urea. No difference was found in smut count or stalk population, and there were no significant interactions between N carrier and other treatments.

Security

The optimum economic level of water application was around .8pan or 65 in. total water (rainfall + irrigation). Both higher and lower levels of water application were less efficient in terms of 1b sucrose obtained per inch of water; the driest treatment was only half as efficient as the optimum.

Where optimum irrigation was given, there was no difference in yields between burnt and trashed cane; where higher levels of water were applied burnt cane slightly outyielded trashed cane, due to its higher stalk population. Where the cane was badly stressed, trashed cane yielded far higher than burnt cane. This confirms other evidence that trash benefits the crop only through moisture conservation, and increased irrigation can be substituted for the trash blanket.

Urea gave lower cane yields, less $lodgin_{\mathcal{B}}$, higher sucrose content and the same sucrose yields/acre as sulphate of ammonia.

Urea va. Sulphate of Armonia

y y k		, , , , , , , , , , , , , , , , , , ,	· · · · · ·	· ·	ан солония Кал
in all starts for	1 52-5	54.4 12.6 5.82	5.2 5.2 10.7	1.6 0.3	2.4 1.1 1.0,20
(it). 		5-9 846	9E	- 95	

			- 3 -						
		LOI	GING %						
Irrigation Treatments Burning Trashing L.s.d. Body of Table (5 Burning Trashing L.s.d. Body of Table (5 Burning Trashing L.s.d. Body of Table (5 Burning Trashing .s.d. Body of Table (5)	W1	W3	W2	w4	W5	W6	Mean	Lsd() 5%	leans 1%
Burning Trashing	92 97	73 71	65 92	20 29	0	0 0	41.6 48.0	5.7	7.6
L.s.d. Body of Table (5	%) 1 1	• • •	-	.L	<u></u>		.	╘╌╴┵╼╸╺┙	
r		SMUT	WHIPS/A	1	.	1	1		
Burning Trashing	170 222	328 207	126 211	314 159	347 196	148 170	239 176	81	108
L.s.d. Body of Table (5	%) 199		-	P					
Provend and			E % CAN	T	47.5	47.0	17 0		
Burning Trashing	14.9 12.8	13.2 13.0	14.0 13.2	13.8 12.3	13.5	13.2	13.8 12.6	0.4	0.6
L.s.d. Body of Table (5	%) 1.0) (1%)	1.4		<u> </u>	<u></u>	<u></u>	•	<u> </u>
			X % CAN	E	·····		1	}	
Burning Trashing	16.8 15.4	16.7 16.5	17.5 17.0	17.7	17.6 17.5	17.4 17.5	17.3 16.8	0.2	0.3
.s.d. Body of Table (5	%) 0.6		0.8 RITY %						
Burning Trashing	85.7 85.7	87.1 86.7	88.1 86.6	88.2 87.5	87.0 85.8	83.3 83.9	86.6 86.0	-	~
<u></u>		SUCRO	SE % CA	NE	<u> </u>	<u></u>	نے۔جـ <u>ـــیة:</u>	<u> </u>	
Burning Trashing	14.4 13.2	14.5 14.3	15.4 14.7	15.6 14.9	15.3 15.0		15.0 14.5	0.25	0.34
•	%) 0.6		0.8	لى بەر ا			مىيە يەرەبىرە بىل ار		
			E INCH				1		
Burning Trashing	1.09 1.02	1.29 1.31	1.36 1.35	1.47 1.62	1.43 1.63	1.08 1.80 -	1.29 1.45		. <u>.</u>
	TONS	CANE/1	NCH TOT	AL WATE	R		-		۰.
Burning	0.83 0.78	0.94 0.95	0.97 0.96	0.98 1.08	0.85 0.97	0.54 0.90	0.35 0.94		
L.	B. SUG	AR/ACH	E INCH	IRRIGAT	ION				
Burning Traching	264 229	322 322	365 342	397 420	380 422	261 453	331 365		
L	B. SUG	AR/ACR	E INCH	TOTAL W	ATER				
Surnitor Trashing	202 175	235 235	260 244	265 281	226 251	131 228	220 236		

At the wettest irrigation level, the burnt plots produced a slightly higher cane yield and significantly higher sugar per acre. The advantage of burning disappeared at a level of around 0.8 x Pan, and trashing became increasingly superior to burning with drier treat-ments until it resulted in an increase of 13 tons cane/acre and 1.7 tons sugar per acre at an irrigation level of 0.37 x Pan. Burning also produced higher sucrose and recoverable sugar % cane in all treatments except the 0.37 x Pan. Brix and purity were higher in the burnt plots.

1

ų ł

۶

ŕ

The fibre content of the burnt treatment was also much higher than in the trash treatment. <u>Stalk counts</u> were much higher in the burnt than in the trash treatments, for all levels of irrigation except 0.37 x Pan.

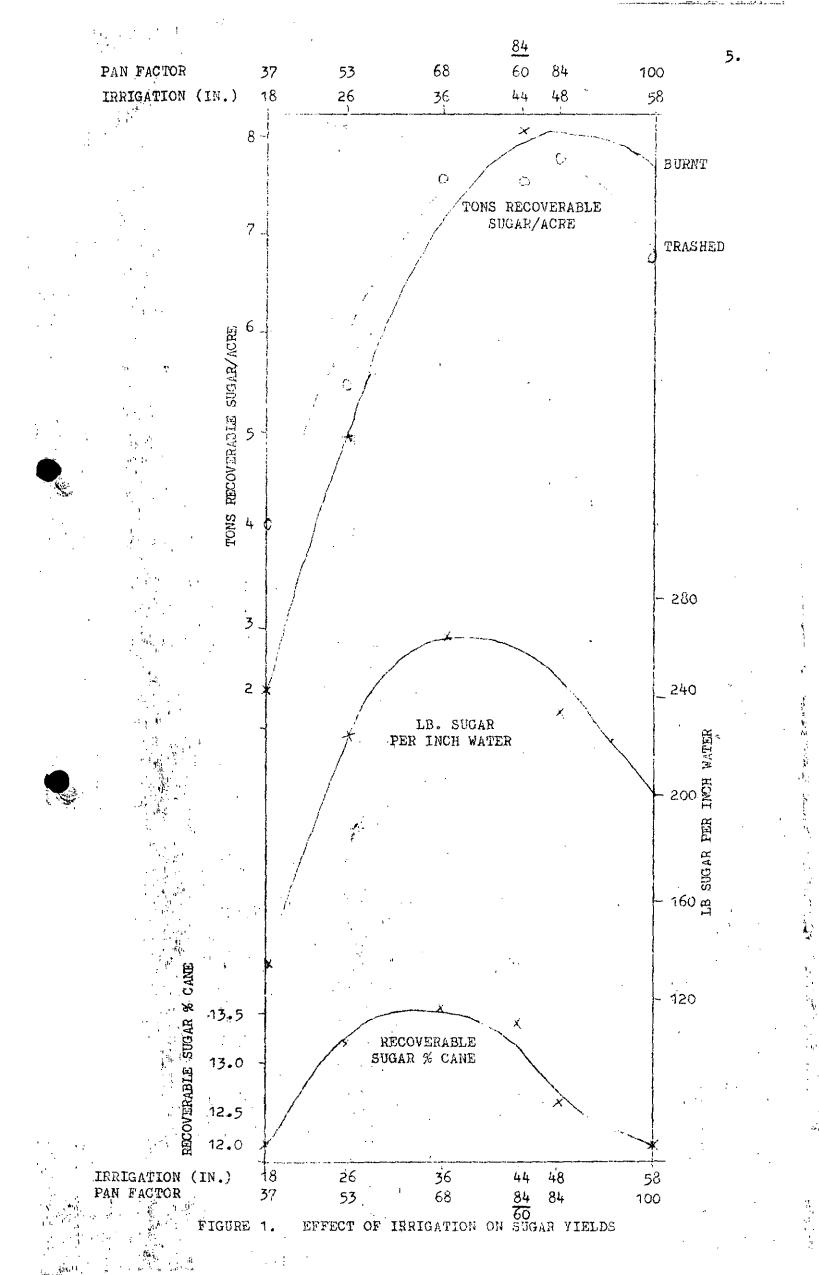
Lodging was generally greater in the trashed plots than in the burnt ones.

The efficiency of water use was greater with trash conservation than with burning. This was particularly marked with the dry treatments, but in the wetter treatments the reverse was true. The highest yield of sugar per inch total water (irrigation + rainfall) was obtained with the 0.68 x Fan treatment with trash conserved, while the second highest was with the same irrigation treatment, burnt.

At a yield level of 6 tons sugar/acre, 4 inches more irrigation would enable the burnt treatment to equal the trash treatment. At $7\frac{1}{2}$ tons/acre, both treatments gave the same yield. This is evident from the graph on p.5.

1. 1. 1. 1. H.

ј 144 1


 $\mathbf{e}^{(i)}$

Urea vs. Ammonium nitrate

No differences between the two nitrogen carriers were observed in tons <u>cane/acre</u>, <u>recoverable sugar % cane</u>, <u>tons recoverable sugar/acre</u>, <u>stalk count</u>, <u>sucrose</u>, <u>brix</u>, <u>fibre</u> or <u>purity</u>. However, it was observed that use resulted in more <u>smut</u> whips per acre than ammonium nitrate, although this is probably not a genuine effect. Ammonium nitrate resulted in a greater % <u>lodging</u> than usea, especially in the burnt treatments.

UREA vs.	AMMONIUM	NITRATE			
Treatments	Urea	A/N	L.		
	orca		5%	1%	
E.R.S.C.		12.62	2.21		141 1444 // 1 1
T.E.R.S.A. Stalk Count '000s/acre	6.34 63.5	6.47 63.5	0.31	10.41 1.8	
% Lodging Smut whips/acre	40 252	50 162	6. 81	8 108 ···	-
Stalk height (ft.) Sucrose % cane	5.5 14.7	5.8 14.7	0.25	- 0.34	
Fibre % cane Brix % cane Purity %	13.2 17.0 86.4	13.2 17.0 86.2	0.4 0.2 -	0.6	

• 4 -

AGRONOMISTS' ASSOCIATION

IRRIGATION LEVEL x TRASH x N-CARRIER TRIAL 4200/1/2R

Catalogue No. : 105 This crop : 2nd ratoon Site: R.S.A. Experiment Station	<u>Soil Analysis</u> : (Dec. '68) pH (CaCl ₂)	6.6
Altitude: 1350' Soil: P E l sandy clay loam Variety: N:Co.376 Design: Split plot	Clay % Cond. (mmho/cm. 1:5 extract) P ₂ O ₅ (p.p.m. resin extract)	23 ' .113 26
Fertilizer:NP205Level16075CarrierTreatmentDouble supersRainfall on crop:17.8 in.	Ex. K (m.e. %) Ex. Ca(m.e. %) Ex. Mg(m.e. %) Ex. Na(m.e. %)	0.71 5.8 3.0 0.80
Age: 11.5 months (2/12/68-18/11/69)	Est. available moisture in effective rooting depth of 30 in.	4.1 in.

Object: To determine the effect of various irrigation regimes on cane yield and estimated recoverable sugar. To compare the effects of burning with a trash blanket and any interaction with levels of irrigation. To compare urea with ammonium nitrate as a N-carrier.

Note:

E.R.S.C.(Estimated Recoverable Sugar % Cane)= S - 0.451 (B-S) - .077 F where S= Sucrose, B= Brix and F= Fibre content of cane obtained by direct analysis. T.E.S.R.S.A. (Tons estimated recoverable sugar per acre)= T.C.A. x E.R.S.C./100.

Results: Table 1. Irrigation Levels

Irrigation Treatments	W1	W3	W2	w4	₩5	W6	c.v. %	Lsd 5%	Lsd 1%
<pre>Pan Factor (Net) Irrigation applied (in.) Total precipitation (in.) Tons Cane/acre E.R.S.C. T.E.R.S.A. Stalk Count '000s/acre % Lodging Smut whips per acre Stalk height (ft.)/ Sucrose % cane Fibre % cane Brix % cane % Purity Flower count/acre Tons cane/ac. in. irrigation Tons cane/ac. in. irrigation Lb. sugar/ac. in. irrigation Lb. sugar/ac. in. total</pre>	58 75.8 61.2 11.7 7.15 65.0 94 196 7.1 13.8 13.9 16.1 85.7 18 1.06	48 65.8 62.3 12.4 7.73 64.4 72 268 6.8 14.4 13.1 16.6 86.9 23 1.30 0.95	61.8 59.8 13.0 7.78 64.6 78 114 6.9 15.1 13.6 17.2 87.3 9 1.36 0.97 354	36 53.8 55.6 13.3 7.35 63.5 63.5 63.5 63.5 63.5 63.5 15.0 15.0 17.8 1.5 87.8 1.54 1.03	26 43.8 39.9 13.1 5.22 62.6 0 271 3.9 15.2 12.8 17.5 86.4 5 1.53	18 35.8 25.9 12.3 60.0 159 3.26 159 3.26 159 3.4.6 17.4 83.6 2	- 10.5 5.6 11.8 5.3 31.0 95.8 - - - - -	0.9 0.62 3.0 24 138 - 0.8	4.2 33 191 - 1.2 1.2

* In Treatment W2, 0.84 x Pan was applied for the first 8 months while 0.60 x Pan was applied for the last $3\frac{1}{2}$ months.

" Height on 11/6/69 before excessive lodging occurred.

The response of <u>cane yield</u> to irrigation was very large; yields increased with increasing levels of irrigation up to $.84 \times Pan$. The yields of the 1.0 x Pan treatment were no better than those of $0.84 \times Pan$, partly because of the greater lodging in the 1.0 x Pan treatment. Sucrose % cane and E.R.S.C. were significantly reduced at both extremes of irrigation, with the optimum level at $0.68 \times Pan$. Brix and Purity followed the same trends, while fibre content increased steadily with increasing levels of irrigation. It is clear that a moderate degree of stress produces the highest recoverable sugar % cane.

Tons recoverable sugar per acre was highest with $0.84 \times Pan$, while even $0.68 \times Pan$ gave as high yields as $1.0 \times Pan$.

The most economic use of water, expressed as tons cane or <u>lb. sugar</u> <u>per acre in.water</u> (irrigation or total) was consistently obtained with the 0.68 x Pan treatment. This was during a crop which received 17.8 in. rain. During the 1st ratoon, when only 7.3 in. effective rain was recorded, the most economic use of water was obtained with 0.84 x Pan. Stalk count increased significantly with increasing levels of

irrigation, from 60,000/acre in the driest to 65,000 in the wettest treatment.

Lodging increased sharply with increased levels of irrigation, as did stalk height.

Irrigation had no effect on the incidence of smut.

Although there was relatively little <u>flowering</u>, the wetter treatments had more flowers than the dry ones.

Burning vs. Trashing

IRRIGATION x TRASH MANAGEMENT

IRRIGATION LEVELS										
Irrigation Treatments	W1	W3	W2	W4	₩5	W6	Mean	Lsd(5%	Means) 1%	
Pan Factor (Net) Irrigation applied (in.) Total precipitation(in.)		.84 48 65.8	.84/.6 44 61.8	.68 36 53.8	•53 26 43•8	•37 18 35•8	-	-		

		TONS (CANE/ACR	E							
Burning Trashing	63.2 59.2	61.9 62.7	60.0 59.6	52.9 58.3	37.3 42.4	-	49 . 1 52 . 4	2.2	2.9		
L.s.d. Body of Table (5%) 5.3 (1%) 7.1											
EST	IMATED	RECOVI	ERABLE S	UGAR %	CANE						
Burning Trashing	12.2 11.2	12.6 12.3	13.4 12.6	13.6 13.0	13.2 13.0	12.2 12.5	12.9 12.4	0.3	0.4		
-	L.s.d. Body of Table (5%) 0.7 (1%) 0.9 TONS ESTIMATED RECOVERABLE SUGAR/ACRE										
Burning Trashing	7.65 6.63	7.73 7.73	8.03 7.53	7.14 7.56	4.94 5.49	2.35 4.08	6.31 6.50	0•31	0.41		
L.s.d. Body of Table (5%	L.s.d. Body of Table (5%) 0.75 (1%) 1.01 STALK COUNT ('000s/acre)										
Burning Trashing	69.2 60.7	69.7 59.1	68.0 61.2	67.7 59.3	66.4 58.9		67.1 59.9	1.4	1.8		
ويستجمعه والمحاد والمنابع والمنابع فالمتعال فتتلقه النتكر فكالكن فتترك والترك والمحالي والمحال والمحال											

L.s.d. Body of Table (5%) 3.3 (1%) 4.4

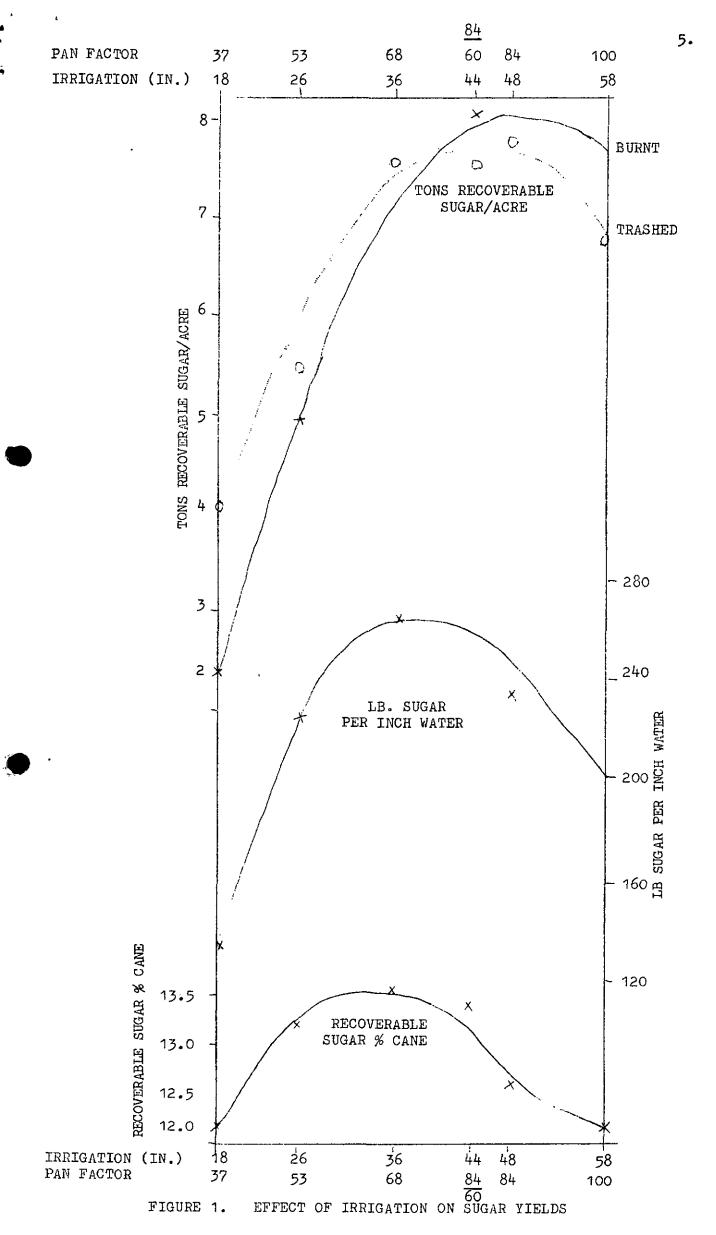
	-	- 3 -						
	LOI	GING %						
W1	₩3	W2	W4	₩5	W6	Mean	Lsd(N 5%	leans) 1%
92 97	73 71	65 92	20 29	0 0	0 0	41.6 48.0	5.7	7.6
5%) 11	+ (1%)	19	·					
.	SMUT	WHIPS/A	CRE	1		iF		
170 222	328 207	126 211	314 159	347 196	148 170	239 176	81	108
5%) 199) (1%)	265						
	FIBI	RE % CAN	Ē			1		
14.9 12.8	13.2 13.0	14.0 13.2	13.8 12.3	13.5 12.1	13.2 12.0	13.8 12.6	0.4	0.6
5%) 1.() (1%)	1.4						
			E			II		
15.4	16.5	17.0	17.7 17.0	17.6 17.5	17.4 17.5	17.3 16.8	0.2	0.3
5%) 0.6								
1			1	<u> </u>		1		r
85.7 85.7	87.1 86.7	88.1 86.6	88.2 87.5	87.0 85.8	83.3 83.9	86.6 86.0	-	-
	SUCRO	SE % CA	NE					
14.4 13.2	14.5 14.3	15.4 14.7	15.6 14.9	15.3 15.0	14.5 14.7	15.0 14.5	0.25	0.34
5%) 0.6	5 (1%)	0.8	<u> </u>	· <u> </u>	I	J		L
TONS CA	NE/ACF	RE INCH	IRRIGAT	ION				<u>.</u>
1.09 1.02	1.29 1.31	1.36 1.35	1.47 1.62	1.43 1.63	1.08 1.80	1.29 1.45		
TONS	CANE/1	NCH TOT	AL WATE	R				
0.83 0.78	0.94 0.95	0.97 0.96	0.98 1.08	0.85 0.97	0.54 0.90	0.85 0.94		
LB. SUG	AR/ACE	E INCH	IRRIGAT	ION				
264 229	322 322	365 342	397 420	380 422	261 453	331 365		
LB. SUG	AR/ACE	RE INCH	TOTAL W	ATER				
202 175	235 235	260 244	265 281	226 251	131 228	220 236		
	92 97 5%) 1 ² 170 222 5%) 199 14.9 12.8 5%) 1.0 16.8 15.4 5%) 0.6 85.7 85.7 85.7 14.4 13.2 5%) 0.6 1.09 1.02 1.09 1.02 TONS 0.83 0.78 LB. SUG 202	LOI W1 W3 92 73 97 71 5%) 14 (1%) SMUT 170 328 222 207 5%) 199 (1%) FIBI 14.9 13.2 12.8 13.0 5%) 1.0 (1%) BRI 16.8 16.7 15.4 16.5 5%) 0.6 (1%) PU 85.7 87.1 85.7 87.1 85.7 87.1 85.7 87.1 85.7 87.1 85.7 87.1 5%) 0.6 (1%) PU 85.7 87.1 5%) 0.6 (1%) FIBI 16.8 16.7 15.4 16.5 5%) 0.6 (1%) PU 85.7 87.1 85.7 87.1 15.4 14.5 15.2 14.3 5%) 0.6 (1%) PU 85.7 87.1 10.2 1.31 TONS CANE/ACF 1.09 1.29 1.02 1.31 TONS CANE/I 0.83 0.94 0.78 0.95 LB. SUGAR/ACF 202 235	LODGING % W1 W3 W2 92 73 65 97 71 92 5%) 14 (1%) 19 SMUT WHIPS/A 170 328 126 222 207 211 5%) 199 (1%) 265 FIBRE % CAN 14.9 13.2 14.0 12.8 13.0 13.2 5%) 1.0 (1%) 1.4 BRIX % CAN 16.8 16.7 17.5 15.4 16.5 17.0 5%) 0.6 (1%) 0.8 PURITY % 85.7 87.1 88.1 85.7 87.1 88.1 85.7 87.1 88.1 85.7 87.1 88.1 85.7 87.1 88.1 85.7 87.1 86.6 SUCROSE % CA 14.4 14.5 15.4 13.2 14.3 14.7 5%) 0.6 (1%) 0.8 PURITY % 85.7 87.1 88.1 85.7 87.1 86.7 14.4 14.5 15.4 13.2 14.3 14.7 5%) 0.6 (1%) 0.8 TONS CANE/ACRE INCH 1.09 1.29 1.36 1.02 1.31 1.35 TONS CANE/ACRE INCH 1.09 1.29 1.36 1.02 1.31 1.35 TONS CANE/INCH TOT 0.83 0.94 0.97 0.78 0.95 0.96 LB. SUGAR/ACRE INCH 264 322 365 229 322 342 LB. SUGAR/ACRE INCH 202 235 260	LODGING % W1 W3 W2 W4 92 73 65 20 97 71 92 29 5%) 14 (1%) 19 SMUT WHIPS/ACRE 170 328 126 314 222 207 211 159 5%) 199 (1%) 265 FIBRE % CANE 13.8 12.8 14.9 13.2 14.0 13.8 12.8 13.0 13.2 12.3 5%) 1.0 (1%) 1.4 BRIX % CANE 16.5 17.0 17.0 5%) 0.6 (1%) 0.8 PURITY % 85.7 87.1 88.1 88.2 85.7 87.1 88.1 88.2 92) 0.6 (1%) 0.8 14.3 14.4 14.5 15.4 15.6 13.2 14.3 14.7 </td <td>LODGING % W1 W3 W2 W4 W5 92 73 65 20 0 97 71 92 29 0 5%) 14 (1%) 19 29 0 5%) 14 (1%) 19 347 347 222 207 211 159 196 5%) 199 (1%) 265 5 12.8 13.0 13.2 12.3 12.1 5%) 199 (1%) 265 12.8 13.0 13.2 12.3 12.1 5%) 1.0 (1%) 1.4 13.8 13.5 12.3 12.1 5%) 1.0 (1%) 1.4 13.2 12.3 12.1 5%) 1.0 (1%) 1.4 13.8 13.5 12.3 12.3 15.0 15.7 17.7 17.6 17.5 17.0 17.5 5%)</td> <td>LODGING % W1 W3 W2 W4 W5 W6 92 73 65 20 0 0 97 71 92 29 0 0 5%) 14 (1%) 19 0 0 5%) 14 (1%) 19 0 0 5%) 14 (1%) 19 0 0 5%) 199 (1%) 265 170 170 13.8 13.5 13.2 12.8 13.0 13.2 12.3 12.1 12.0 5%) 1.0 (1%) 1.4 13.8 13.5 13.2 12.8 13.0 13.2 12.3 12.1 12.0 5%) 1.0 (1%) 1.4 13.8 13.5 13.2 14.4 16.5 17.0 17.0 17.5 17.5 5%) 0.6 (1%) 0.8 85.8 83.9</td> <td>LODGING % W1 W3 W2 W4 W5 W6 Mean 92 73 65 20 0 0 41.6 97 71 92 29 0 0 48.0 5%) 14 (1%) 19 </td> <td>LODGING % W1 W3 W2 W4 W5 W6 Mean Lsd(h 5% 92 73 65 20 0 0 41.6 5.7 97 71 92 29 0 0 48.0 5.7 5%) 14 (1%) 19 </td>	LODGING % W1 W3 W2 W4 W5 92 73 65 20 0 97 71 92 29 0 5%) 14 (1%) 19 29 0 5%) 14 (1%) 19 347 347 222 207 211 159 196 5%) 199 (1%) 265 5 12.8 13.0 13.2 12.3 12.1 5%) 199 (1%) 265 12.8 13.0 13.2 12.3 12.1 5%) 1.0 (1%) 1.4 13.8 13.5 12.3 12.1 5%) 1.0 (1%) 1.4 13.2 12.3 12.1 5%) 1.0 (1%) 1.4 13.8 13.5 12.3 12.3 15.0 15.7 17.7 17.6 17.5 17.0 17.5 5%)	LODGING % W1 W3 W2 W4 W5 W6 92 73 65 20 0 0 97 71 92 29 0 0 5%) 14 (1%) 19 0 0 5%) 14 (1%) 19 0 0 5%) 14 (1%) 19 0 0 5%) 199 (1%) 265 170 170 13.8 13.5 13.2 12.8 13.0 13.2 12.3 12.1 12.0 5%) 1.0 (1%) 1.4 13.8 13.5 13.2 12.8 13.0 13.2 12.3 12.1 12.0 5%) 1.0 (1%) 1.4 13.8 13.5 13.2 14.4 16.5 17.0 17.0 17.5 17.5 5%) 0.6 (1%) 0.8 85.8 83.9	LODGING % W1 W3 W2 W4 W5 W6 Mean 92 73 65 20 0 0 41.6 97 71 92 29 0 0 48.0 5%) 14 (1%) 19	LODGING % W1 W3 W2 W4 W5 W6 Mean Lsd(h 5% 92 73 65 20 0 0 41.6 5.7 97 71 92 29 0 0 48.0 5.7 5%) 14 (1%) 19

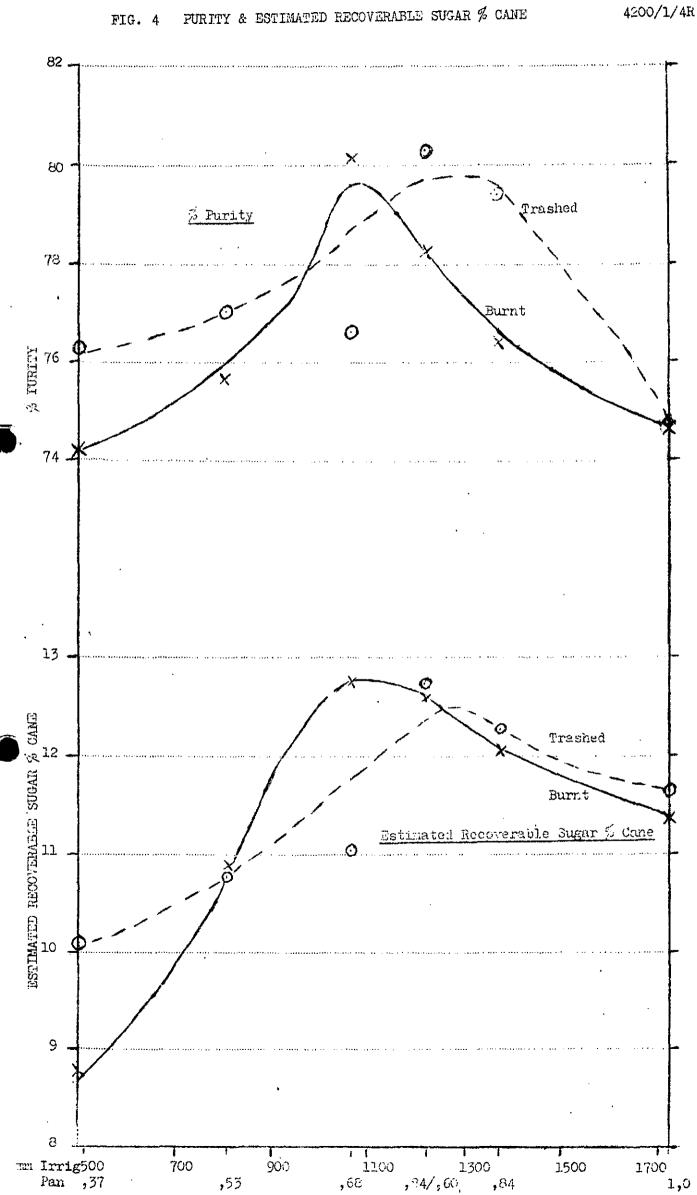
At the wettest irrigation level, the burnt plots produced a slightly higher cane yield and significantly higher sugar per acre. The advantage of burning disappeared at a level of around 0.8 x Pan, and trashing became increasingly superior to burning with drier treatments until it resulted in an increase of 13 tons cane/acre and 1.7 tons sugar per acre at an irrigation level of 0.37 x Pan. Burning also produced higher sucrose and recoverable sugar % cane in all treatments except the 0.37 x Pan. Brix and purity were higher in the burnt plots. The <u>fibre</u> content of the burnt treatment was also much higher than in the trash treatment. <u>Stalk counts</u> were much higher in the burnt than in the trash treatments, for all levels of irrigation except 0.37 x Pan.

Lodging was generally greater in the trashed plots than in the burnt ones.

The <u>efficiency of water use</u> was greater with trash conservation than with burning. This was particularly marked with the dry treatments, but in the wetter treatments the reverse was true. The highest yield of sugar per inch total water (irrigation + rainfall) was obtained with the 0.68 x Pan treatment with trash conserved, while the second highest was with the same irrigation treatment, burnt.

At a yield level of 6 tons sugar/acre, 4 inches more irrigation would enable the burnt treatment to equal the trash treatment. At $7\frac{1}{2}$ tons/acre, both treatments gave the same yield. This is evident from the graph on p.5.


Urea vs. Ammonium nitrate


ĩ

No differences between the two nitrogen carriers were observed in tons <u>cane/acre</u>, <u>recoverable sugar % cane</u>, <u>tons recoverable sugar/acre</u>, <u>stalk count</u>, <u>sucrose</u>, <u>brix</u>, <u>fibre or purity</u>. However, it was observed that urea resulted in more <u>smut</u> whips per acre than ammonium nitrate, although this is probably not a genuine effect. Ammonium nitrate resulted in a greater % <u>lodging</u> than urea, especially in the burnt treatments.

Treatments	Urea	A/N	L.s.d.		
	orea		5%	1%	
Tons Cane/acre E.R.S.C. T.E.R.S.A. Stalk Count '000s/acre % Lodging Smut whips/acre Stalk height (ft.) Sucrose % cane Fibre % cane Brix % cane Purity %	50.2 12.66 6.34 63.5 40 252 5.5 14.7 13.2 17.0 86.4	51.3 12.62 6.47 63.5 50 162 5.8 14.7 13.2 17.0 86.2	2.2 0.29 0.31 1.4 6 81 - 0.25 0.4 0.2 -	2.9 0.38 0.41 1.8 8 108 - 0.34 0.6 0.3 -	

UREA vs. AMMONIUM NITRATE

SOUTH AFRICAN SUGAR INDUSTRY AGRONOMISTS' ASSOCIATION

IRRIGATION LEVEL x TRASH x N-CARRIER TRIAL 4200/1/3R

Catalogue No.: 105	Soil Analysis: (Dec. 1970)	
<u>This crop</u> : 3rd Ratoon Site: Experiment Station	pH (CaC1 ₂)	5.5
Altitude: 1350'	0.M.%	1.3
<u>Soil</u> : P E 1 sandy clay loam Variety: NCo 376	Cond. (mmho/cm)	284
Design: Split plot	Ex. K (m.e. %)	0.90
Fertilizer: N P ₂ O ₅	Ex. Ca(m.e. %)	6.70
Level 160 75(Single Sup.)	Ex. Mg(m.e. %)	2.26
Rainfall on crop: 14,96 in.	Ex. Na(m.e. %)	0.76
	Age: 12.0 months (23/11/69-23	3/11/70)

<u>Object</u>: To determine the effect of various irrigation regimes on cane yield and recoverable sugar. To compare the effects of burning with a trash blanket and any interaction with levels of irrigation. To compare urea with ammonium nitrate as N-carrier.

Results: Table 1. Irrigation Levels

1

.

.

f .							L.s	.d.	
Irrigation Treatments	W 1	₩3	W 2*	W4	₩5	W 6	5%	1%	c.v.%
Pan factor (net)	1.00	0.84	.84/.6	0.68	0.53	0.37	-	-	-
Irrigation (in.)	70.0	60.0	52.0	48.0	36.0	24.0	-	-	-
Total precip. (in.)	85.1	75.1	67.1	63.1	51.1	39.1	-	-	-
Tons Cane/acre	65. 5	63.6	59.1	51.4	31.6	19.1	4.9	6.8	9.0
F.R.S.% C.	12.43	12.97	13.36	13.30	12.47	11.64	0.51	0.70	4.5
T.E.R.S.A.	8. 14	8.25	7.90	6.82	3.93	2.25	0.57	0.78	9.5
Stalk count'000s/acre	69.2	68.7	68.3	68.4	64.1	56.8	6.7	9.3	7.2
Stalk diameter (mm)	22.5	22.9	23.1	24.2	24.0	22.1	1.00	1.39	4.0
% Lodging	95	72	47	14	0	0	-	-	-
Stalk height (in)+	79•7	74.7	61.5	59•9	32.3	27.7	-	-	-
Sucrose % Cane	14.4	14.9	15.2	15.1	14.3	13.6	0.4	0.6	3.5
Brix % Cane	16.5	16.9	17.4	17.0	16.4	16.0	0.6	0.8	3.7
Fibre % Cane	13.3	12.9	12.0	12.2	12.1	11.8	0.6	0.9	6.4
% Purity	87.4	87.9	87.8	88.6	87.2	85.2	-	-	_
Smut whips/acre	413	568	369	352	604	378	315	435	83.0
Tons Cane/acre in. Irrig.	0.94	1.06	1.14	1.07	0.88	0.80	-	***	-
Tons Cane/acre in. Total	0.77	0.85	0.88	0.81	0.62	0.49	-	-	-
Lb. Sug./acre in. Irrig.	233	275	304	284	218	188	-	-	-
Lb. Sug./acre in. Total	191	220	235	216	154	115	-	-	. -

*In Treatment W 2, 0.84 x Pan was applied for the first 8½ months while 0.60 x Pan was applied for the last 3½ months. +Stalk height on 1/7/70 before excessive lodging occurred.

Expt. 4200/1/3R 1970

TRASH MANAGEMENT & IRRIGATION INTERACTION

Table 2.

2

.

÷

.

ţ

								L.S.D. 5% 1%		
		₩1	W 3	W 2	W 4	W 5	Wб	Mean	Mean	Body of Table
Tons cane per acre	B T	68.2 62.8	66.3 61.0	60.0 58.1	48.8 54.0	27.3 35.9	13.0 25.3	47.3 49.5	1.8 2.4	4.4 5.8
E.R.S.C.	B T	12.62 12.25	13.25 12.69			12.72 12.21		12.92 12.47	-	0.57 0.76
T.E.R.S.A.	B T	8.60 7.69	8.77 7.74	8.30 7.49	6.67 6.97	3.48 4.37	1.47 3.02	6.22 6.21	0.24 0.32	0.59 0.79
Stalk Count '000s/Acre	B T	74.1 64.3	77.0 60.4	76.1 60.4	74.5 62.4	69.5 58.7	55.8 57.8	71.2 60.7	1.9 2.6	4.8 6.3
Stalk Diam. mm	B T	21.9 23.2	22.4 23.4	22.9 23.2	23.7 24.8	22.8 25.1	20.8 23.4	22.4 23.8	0.4 0.5	0.9 1.2
Stalk Height (in.)	B T	82.7 76.6	76.6 72.7	58.2 64.8	57•7 62•1	27.8 36.9	24.3 31.2	54.6 57.4	- 1	-
Sucrose % Cane	B T	14.6 14.2	15.2 14.6	15.8 14.6	15.6 14.7	14.6 14.1	13.4 13.8	14.9 14.3	0.2 0.3	0.5 0.7
Brix % Cane	B T	16.7 16.2	17.2 16.6	18.2 16.6	17.5 16.6	16.7 16.2	15.9 16.0	17.0 16.4	0.3 0.3	0.6 0.8
Fibre % Cane	B T	13.8 12.9	13.4 12.4	12 .3 11 . 7	12.6 11.7	12 . 7 11 . 6	12.2 11.5	12.8 12.0	0.3 0.4	0.8 1.1
% Purity	B T	87.6 87.3	88.1 87.7	87.2 88.4	88.9 88.3	87.7 86.7	84.3 86.2	87.3 87.4	-	-
Smut Count per acre	B T	310 517	661 476	402 3 3 6	399 306	712 495	321 436	468 428	152 202	372 496
% Lodging	B T	91 99	71 72	25 69	13 15	0 0	0 0	33 43		-
Tons Cane/ Ac. in. Irrig.	B T	0.97 0.90	1.10 1.02		1.02 1.12	0.76 1.00	0.54 1.05			
Tons Cane/ Ac. in. Tot.	B T	0.80 0.74	0.88 0.81	0.89 0.87	0.77 0.86	0.53 0.70	0.33 0.65			
lb. Sugar/ Ac. in. Irrig.	B T	246 220	292 258	319 288	278 290	193 243	12 3 252			
lb. Sugar/ Ac. in. Tot.	B T	2 0 2 181	231 206	247 223	211 220	136 171	75 154			

Note

E.R.S.C. = Estimated Recoverable Sugar % Cane = S - 0.451 (B - S) - .077 F where S = Sucrose % cane, B = Brix and F = Fibre by direct analysis. T.E.R.S.A. = Tons Estimated Recoverable Sugar/acre = T.C.A. x E.R.S.C./100.

Responses to Irrigation and Burning vs. Trashing

There was a very large response in cane yield to irrigation, which was essentially linear up to about 50 inches of water applied (84/60) treatment, after which there was a much smaller increment. The response to irrigation was much poorer under trashed conditions than burnt, due to the trashed treatments giving a higher yield with dry irrigation levels and a lower yield (5.4 tons cane/acre) with the The consistently higher cane yields being obtained wettest levels. with burnt than trashed cane with the wetter irrigation treatments is presumably a result of the much lower stalk population which was evident in the trash treatments in spite of parting the trash over the rows. Only in the 37% Pan treatment was the population higher in trash than burnt, due to the extreme desiccation suffered by the latter treatment. There was little or no effect of irrigation on stalk count within the range 68 to 100% Pan, but there was a very marked reduction with the drier treatments in burnt cane and a slight reduction in trashed cane. There was a highly significant quadratic response of <u>stalk diameter</u> to irrigation, with the medium levels (68 & 53% Pan) having significantly thicker stalks than either the wetter or drier treatments. Trashing resulted in significantly thicker cane than did burning over all irrigation levels. This is probably due to the lower stalk population of trashed cane in the wet treatments and to the severe desiccation of the cane in the burnt plots of the dry treatments. Stalk height showed similar trends to cane yield.

<u>Sucrose % cane</u> peaked at the intermediate irrigation treatments, being significantly lower in both wet and dry treatments. This trend was far more marked with burnt cane than with trashed cane. Burning produced significantly higher sucrose than trashing at all levels except 37% Pan. The differential was as much as 1% in the intermediate treatments (84% & 84/60% Pan). <u>Brix % cane</u> showed similar trends to sucrose except that the reduction with dry treatments was not nearly as marked. Consequently the purity of the dry treatments, especially where burnt, was much lower than in the medium - high irrigation levels. <u>Fibre % cane</u> showed a marked increase with increasing levels of irrigation. Burnt cane was consistently higher in fibre than trashed cane.

The <u>Estimated Recoverable Sugar % Cane</u> showed similar trends to sucrose with a peak in the intermediate irrigation levels and with burnt cane higher than trash at all levels except 37% Pan. <u>Tons</u> <u>Recoverable Sugar/acre</u> showed a dramatic increase with irrigation levels up to the 84/60% Pan treatment after which the increment was small. Burnt cane produced significantly more sugar/acre with 100%, 84% and 84/60% Pan irrigation levels; with a crossover point at about 75% Pan, burnt cane gave much lower yields than trashed cane at the dry irrigation levels.

Lodging showed a marked increase with increasing irrigation. Trashed cane lodged more than burnt cane. No effect of irrigation or burning vs. trashing could be detected on <u>smut</u> level.

Eficiency of water use (measured by either tons cane or lb. sugar produced per inch of water applied) was highest in the 84/60 treatment. Efficiency was higher with burnt cane in the wet treatments and higher with trashed cane in the dry treatments. There was relatively little change in efficiency with different irrigation levels in trashed cane but a large decrease in efficiency with the dry treatments in burnt cane.

Urea vs. Ammonium nitrate

The only significant difference between the two carriers was that urea resulted in higher fibre % cane than ammonium nitrate.

Urea gave an almost significant increase in tons recoverable sugar/acre compared with ammonium nitrate, due to slightly but not significantly higher cane yields and sucrose content. (Urea gave 6.34 and ammonium nitrate 6.09 tons sugar/acre). There were no important interactions with irrigation.

	U	A/N	L.s.d. 5%	L.s.d. 1%	
T.C.A.	48.9	47.8	1.8	2.4	NS
E.R.S.C.	12.78	12.61	0.23	0.51	NS
T.E.R.S.A.	6.34	6.09	0.25	0.32	NS(*)
Stalk count	66.5	65.3	1.9	2.6	NS
Stalk diameter	23.0	23.3	0.4	0.5	NS
% Lodging	36	39	-	-	
Sucrose % cane	14.69	14.51	0.21	0.28	NS
Brix % cane	16.76	16.64	0.26	0.34	NS
Fibre % cane	12.58	12.20	0.32	0.43	H
% Purity	87.6	87.2	-	-	ļ
Smut whips	508	387	152	202	NS

UREA vs. AMMONIUM NITRATE

Table 3

FOLIAR ANALYSIS

Foliar samples were taken from each plot at 5 months (18/4/70) and the following analytical results obtained.

	·	W1	W3	W2	W4	₩5	W6
%1	1	1.96	1.92	1.91	1.92	1.84	1.95
I	2	•234	•233	•227	. 222	.222	.218
ŀ	C	1.38	1.39	1.39	1.39	1.37	1.26
Ċ	Ja j	.230	.220	.230	•238	.271	•277
4	⁄ig	• 184	.176	. 1 7 4	.162	.171	.176
In water applied		70	60	52	48	36	24
Days after irrig.		5	7	7	8	13	5

There was a fairly close relationship between the %N and the number of days that the sample was taken after irrigation. This illustrates the importance of not taking samples when the cane is stressed.

Severe drought stress caused a reduction in P & K and an increase in Ca. Mg was largely unaffected.

Burning vs. trashing and urea vs. ammonium nitrate had no effect on foliar analysis. Results were:

	N	P	K	Ca	Мg
Burnt	1.91	•225	1.34	•254	.168
Trashed	1.92	•228	1.38	•235	.179
Urea	1.91	•226	1.38	•233	.173
Ammonium Nitrate	1.93	•226	1.35	•255	.175

SOIL ANALYSIS

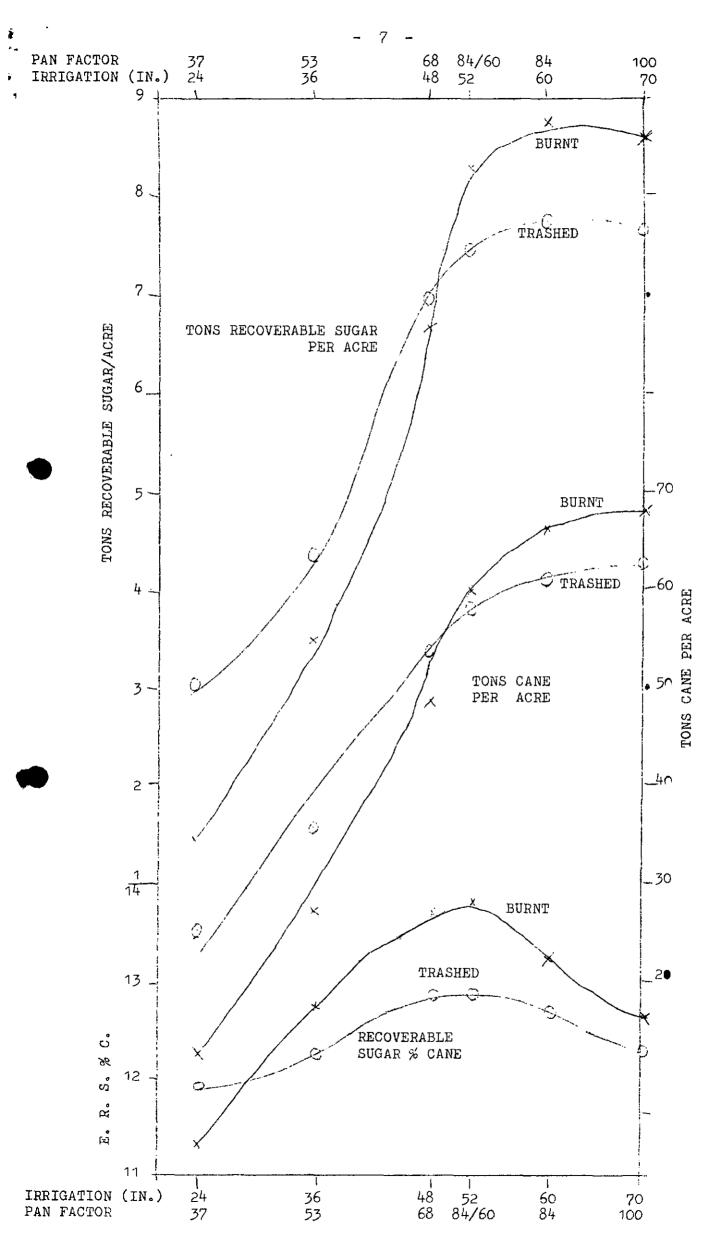
After 4 years, the experiment was soil sampled plot by plot to ascertain whether there had been any effect of treatment on soil analysis. Mean results are given below.

•	W1	W3	₩2 <u>≆</u>	W4	W5	W6
pH	6.11	5.41	5.49	5.78	5.20	5.27
Cond.	324	266	234	312	267	302
O.M.%	1.42	1.29	1.16	1.22	1.26	1.20
Ex. K m.e.%	0.97	0.88	0.76	0.94	0.84	1.01
Ex. Ca m.e.%	7.97	6.44	6.22	7.58	6.14	5.86
Ex. Mg m.e.%	2.59	2.38	1.91	2.19	2.32	2.15
Ex. Na m.e.%	0.71	0.77	0.77	0.83	0.73	0.77
pH {U {S/AN	6.42 5.80	5.85 4.98	5.85 5.14	5.99 5.56	5.59 4.81	5.70 4.84

	В	T	υ	s/an	Original analysis
рH	5.67	5.42	5.90	5.19	6.40
Cond.	290	278	283	286	-
0.M.%	1.23	1.29	1.23	1.29	1.27
Ex. K m.e.%	n.94	0.86	0.90	0.90	0.85
Ex. Ca m.e.%	6.91	6.49	7.10	6.30	8.6
Ex. Mg m.e.%	2.33	2.18	2.49	2.03	3.1
Ex. Na m.e.%	0.77	0.76	0.73	0.80	-

Effect of Irrigation

f


There has been a drop in pH in all treatments; the drop has been much greater with the dry irrigation levels than with the wetter treatments. This also applies to the exchangeable Calcium in the soil. There also appears to be a drop in organic matter with the drier treatments, probably because the build-up of organic matter in the soil can only proceed when the soil is moist. The application of sulphate of ammonia for two years and ammonium nitrate for two years has caused a sharp reduction in pH to 5.19 compared with the value of 5.90 for urea and 6.40 prior to starting the experiment. This is consistent over all irrigation levels also a reduction in Calcium and Magnesium with sulphate of ammonia/ammonium nitrate.

Trashing produced a small but consistent drop in pH compared with burning, and exchangeable cations were slightly higher in the burnt treatment. Organic matter was very slightly lower in the burnt plots.

k

1

*

SOUTH AFRICAN SUGAR INDUSTRY AGRONOMISTS' ASSOCIATION "

IRRIGATION LEVEL x TRASH MANAGEMENT x N-CARRIER TRIAL 4200/1

Catalogue N	0.:	.105			·
This crop		4th Ratoon		Soil Analysis:	
Site	•	RSA Experi	iment Station, Chiredzi	pH (CaCl ₂)	5,5
Altitude	:	410 metres		0.M. %	1,3
Soil	:	PEl sand	y clay loam	Cond. (mnho/cm)	0,284
Variety	:	NCo 376		Ex. K (m.e.%)	0,90
Design	:	Split plot		Ex. Ca(m e.%)	6,7
Fertilizer	<u>c</u> :	N	P205	Ex. Mg(m.e.%)	2,26
Level		179	84	Ex. Na(m.e.%)	0,76
Carrier		Treatment	Single supers	Age:	
Rainfall o	on	crop	434 10m	11,9 months (28/11/70-23/11/71)	

<u>Object</u> To determine the effect of various irrigation regimes on cane yield and recoverable sugar. To compare the effects of burning with a trash blanket and any

interaction with levels of irrigation. To compare urea with ammonium nitrate as

Results

Table 1 Irrigation Levels

λ.,....

IRRIGATION TREATMENTS	Wl	W3	₩2*	₩4	₩5	₩6	L.S	5.D. 1%	c.v.%	Signif. Level
Pan Factor (Net)	1,0	, 84	,84/ ,60	,68	,53	,37	-			
Irrigation (mm)	1727	1372	1219	1067	813	508	-	. -	-	
Total Precip. (mm)	2161	1806	1653	1501	1247	942	-		-	
Tons Cane/ha	125,2	126,6	123,9	96,5	49,6	29,4	8,2	11',3	11,1	***
E.R.S. % C.	11,49	12,15	12,64	11,88	10,82	9,42	0,97	1,34	5,4	***
T.E.R.S.H.	14,39	15,38	15,64	11,43	5,35	2,86	1,36	1,89	12,8	***
Stalk Count '000s/ha	179,3	179,3	175,3	172,0	159,7	128,5	10,4	14,4	5,7	***
Stalk Diameter (mm)	20,4	20,7	20,7	21,1	20,1	19,9	0,7	0,9	3,5	*
% Lodging Stalk height (cm)+	93 179 . 1	82 170,7	72 171,2	10 138.0	0 61.8	0 49 . 2	20 +	27 -	45 -	***
Sucrose % Cane	14,6		15,4					.1,2	4,4	***
Brix % Cane	19,6	19,2	19,2	18,6	17,9	16,1	1,5	2,0	6,3	**
Fibre % Cane	11,6	12,2	12,6	11,9	12,3	12,0	1,5	2,1	11,8	NS
% Purity	74,6	77,9	79,8	78,6	76,4	75,3	•••	-		-
kg Cane/m ³ irrig.	7,25	9,23	10,17	9,05	6,10	5,79	1,06	1,46	13,2	***
kg Cane/m ³ Tot. Water	5,79	7,01	7,50	6,43	3,98	3,12	0,63	0,87	12,1	* **
kg Sug./m ³ irrig.	0,83	1,12	1,28	1,07	0,66	0,56	0,14	0,20	13,9	***
kg Sug./m ³ Tot. Water	0,67	0,85	0,95	0,76	0,43	0,30	0,09	0,13	13,2	***

*In Treatment W2, 0,84 x Pan was applied for the first $8\frac{1}{2}$ months while 0,60 x Pan was applied for the last $3\frac{1}{2}$ months.

+Stalk height 5/5/71 before excessive lodging occurred.

Expt. 4200/1/4R 1971 TRASH MANAGEMENT & IRRIGATION INTERACTION

_ 2 _

										L.S.D. 5% 1%
		พา	W3	₩2	W4	₩5	₩6	Mean	Signif. Nean	Body of Table
Tons cane per hectare	B T	130,8 119,5		128,5 119,3		45,3 53,9	18,8 40,0	92,1 91,7	NS	10,2 13,6
E.R.S.C.	B T	11,36 11,62	12,05 12,24	12,56 12,72	12,74 11,01	10,86 10,78	8,79 10,06	11,39 11,40		0,61 0,82
T.E.R.S.H.	B T	14,89 13,89		16,13 15,15		4,90 5,81	1,65 4,06	10,97 10,71		1,39 1,85
Stalk count '000s/hectare	B T	193,3 165,2	196,0 162,5	196,8 153,8	191,6 152,5	174,8 144,6	124,3 132,6	179,5 151,9		9,5 12,6
Stalk Diameter millimetres	B T	19,9 20,9	20,6 20,9	20,3 21,0	20,7 21,4	19,9 20,3	19,6 20,2	20,2 20,8	***	0,7 1,0
alk Height	B T	193,9 164,4	181,0 160,4	163,8 178,7	126,8 149,2	56,4 67,2	42,4 56,0	-		-
Sucrose % cane	B T	14,5 14,7	15,1 14,9	15,5 15,2	15,4 13,8	13,8 13,5	11,6 12,7	14,3 14,1	NS	0,6 0,8
Brix % cane	В Т	19,5 19,7	19,8 18,7	19,8 18,7	19,2 18,0	18,2 17,6	15,6 16,6	18,7 18,2	NS	1,2 1,6
Fibre % cane	B T	12,3 11,0	12,6 11,8	12,7 12,6	12,7 11,1	12,5 12,1	12,9 11,0	12,6 11,6	*** **	1,4 1,9
% Purity	B T	74,6 74,6	76,4 79,6	78,2 81,5	80,5 76,6	75,7 77,0	74,3 76,2	76,6 77,6		-
% Lodging -	B T	98 89	84 80	68 76	8 13	0 0	0 0	43 43	ns	19 26
kg Cane/m ³ irrigation	B T	7,58 6,92	9,92 8,53	10,54 9,79	8,70 9,39	5,57 6,62	3,69 7,88	7,67 8,19	*	1,05 1,39
kg Cane/m ³ Total water	B T	6,05 5,53	7,54 6,48	7,78 7,22	6,19 6,67	3,63 4,32	1,99 4,25	5,53 5,74	NS	0,68 0,91
kg Sug./m ³ irrigation	В Т	0,86 0,80	1,20 1,05	1,32 1,24	1,11 1,03	0,60 0,71	0,32 0,80	0,90 0,94	NS	0,13 0,17
kg Sug./m ³ Total weter	B T	0,69 0,64	0,91 0,92	0,98 0,79	0,79 0,73	0,39 0,47	0,18 0,43	0,66 0,66	ns	0,09 0,12

Note

E.R.S.C. = Estimated Recoverable Sugar % Cane = S - 0,451 (B - S) - ,077 F where S= Sucrose % cane, B= Brix and F= Fibre by direct analysis. T.E.R.S.H. = Tons Estimated Recoverable Sug./ha = T.C.H. x E.R.S.C./100

Responses to Irrigation & Burning vs. Trashing

There was a very large response in <u>Cane yield</u> (Fig. 1) to irrigation, which was essentially linear up to an application of about 1200 mm (,84/,60 treatment), after which there was a much smaller increment. The response to irrigation was much greater under burnt conditions (from 19 to 136 tons/ha) than under trash (40 to 120 tons/ha). The trash treatment gave higher yields with low levels of irrigation due to the moisture conservation by the trash blanket. However, at the high levels of irrigation, burning gave consistently higher yields of some 10-15 tons/ha. This was at least partly due to the higher <u>stalk population</u> (Fig. 2) in the burnt treatments which contained some 30 000 stalks/ha more than the trashed treatments in spite of careful trash parting in the trash treatments. Only at the W6 level (513 mm irrigation) did the trash treatments have a higher stalk population than the burnt. Increasing irrigation levels in burnt cane resulted in a curvilinear increase from 125 to 195 000 stalks/ha, with little difference between ,68 Pan and 1,0 x Pan.

- 3 -

<u>Stalk diameter</u> (Fig. 2) showed the same interesting and significant différences as in the 3rd ratoon viz. at all levels of irrigation, trashing resulted in thicker stalks than burning. The three intermediate treatments (,84; ,84/,60 & ,68) produced significantly thicker stalks than the two driest treatments (,37 & ,53), and also thicker than the 1,0 treatment in burnt cane. <u>Stalk height</u> showed similar trends to cane yield.

<u>Sucrose % cane</u> (Fig. 3) peaked at the intermediate levels of irrigation (1 100-1 200 mm water or ,68 to ,84/,60 treatments), being significantly depressed at both higher and especially at lower levels. These effects were very large in the case of burnt cane, ranging from sucrose content of 11,6% for 0,37 x Pan to 15,5% for 0,84/,60 x Pan down to 14,5% for 1,0 x Pan. <u>Brix % cane</u> (Fig. 3) also peaked at the 0,84/,60 treatment in burnt cane, but with a very slight fall off at the higher level. <u>Purity</u> (Fig. 4) showed a fairly sharp peak with burnt cane at the 0,68 x Pan treatment and at 0,34/,60 with trashed cane. Both wetter and drier treatments resulted in much lower purities. <u>Fibre % cane</u> (Fig. 3), unlike in previous seasons, did not show up any significant effect of irrigation, but the C.V.% was disappointingly high. Burnt cane was significantly higher in fibre than trashed cane.

The Estimated Recoverable Sugar % Cane (Fig. 4) showed similar trends to ucrose with a peak at ,68 (burnt) or ,84/,60 (trashed) and a significant reduction with both wetter and drier treatments. There was no difference between the E.R.S.%C. of burnt and trashed cane at most levels of irrigation, however at ,37 x Pan trashed was significantly higher and at ,68 x Pan significantly lower than burnt cane.

<u>Tone Recoverable Sugar/hectare</u> (Fig. 1) showed a tremendous increase with increasing irrigation from 2 tons at ,37 x Pan (burnt) to a peak of 16 tons at ,84 x Pan (burnt). At the driver levels, trashing produced significantly more sugar than burning (2,4 tons/ha) while at ,84 x Pan, burning produced significantly more than trashing (1,9 tons/ha).

<u>Crop water use efficiency</u> (Fig. 2), expressed as kg sugar produced per m^3 irrigation water applied, showed a sharp peak at the ,84/,60 treatment with an application of 1 200 mm water net. There was a marked reduction in efficiency with both wetter and drier treatments. Efficiencies were higher with trashed treatments at the dry end of the scale only; they were higher with burning at the wet end of the scale.

Lodging showed a sharp increase with increasing levels of irrigation, from zero below levels of ,68 \times Pan to fairly high levels with ,34/,60 and wetter treatments.

Cat. No.: 105

In summary, burning was superior to trashing at all commercially acceptable levels of irrigation; the optimum level of irrigation was 0,84 for cane yield and Tons Estimated Recoverable Sugar/hectare; 0,84/,60 for crop water use efficiency and sucrose, and ,68 for purity and Estimated Recoverable Sugar % Cane.

- 4 --

Urca vs. Ammonium nitrate

Table 3.

đ,

۶,

There were no significant differences between usea and ammonium nitrate in <u>cane yield</u>, <u>E.R.S. % C</u>. or <u>tons E.R.S./ha</u>. However, usea had an advantage which was very nearly significant in all cases. Usea in fact produced significantly more <u>stalks/ha</u> and also a significantly higher <u>sucrose % cane</u> than ammonium nitrate. There were no other differences of interest between the carriers, and no significant interactions.

There is thus the distinct impression that unca was somewhat better utilized by the crop than ammonium nitrate.

	01001 421	MOLION TOIR INT	11(411)		
	Urca	A/N	L.S.D. 5%	L.S.D. 1%	Signif.
Tons Cane/hectare	93,2	90,5	4,2	5,6	ЫS
E.R.S. % Cane	11,52	11,28	0,25	0,33	IIS
7.E.R.S.H.	11,09	10,59	0,57	0,76	NS
Stalk Count	168,1	163,3	5,9	5,1	*
Stalk Diameter	20,4	20,6	0,3	0,4	NS
🖇 Lodging	42	44	[:] 8	11	IJS
Sucrose % Cane	14,4	14,1	0,3	0,3	*
Brix % Cane	18,6	. 18,3	0,5	0,6	NS
Fibre 🖇 Canc	12,1	12,0	0,6	0,8	NS
% Purity	77,1	77,1	•:	-	· <u> </u>
kg Vanc/m ³ irrig.	8,00	7,86	0,43	0,57	NS
kg Cane/m ³ Tot. Water	5,70	5,57	0,28	0,37	: NS
kg Sug./m ³ irrig.	0,94	0,90	0,05	0,07	NS
kg Sug./m ³ Tot. Water	0,67	0,65	0,04	0,05	NS
				. ,	

UREA	vs.	AMMONIUM	NITRATE
------	-----	----------	---------

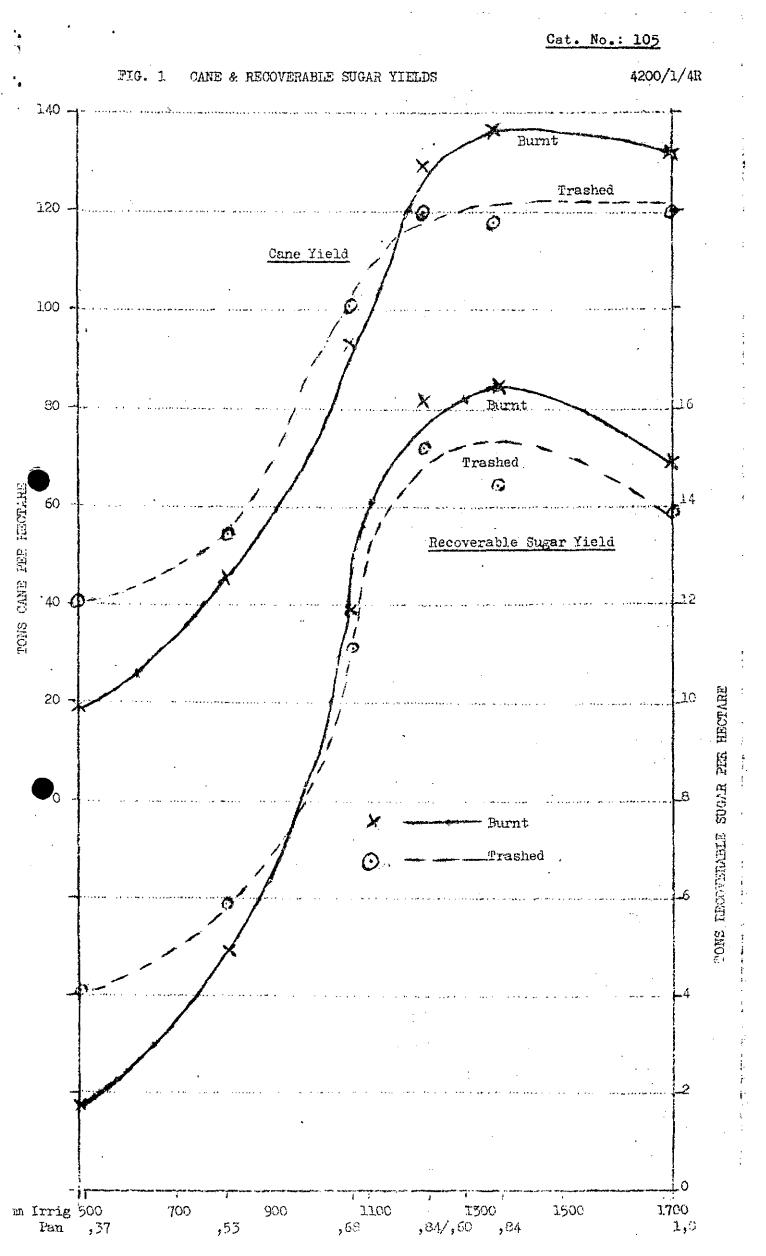
FOLIAR ANALYSIS

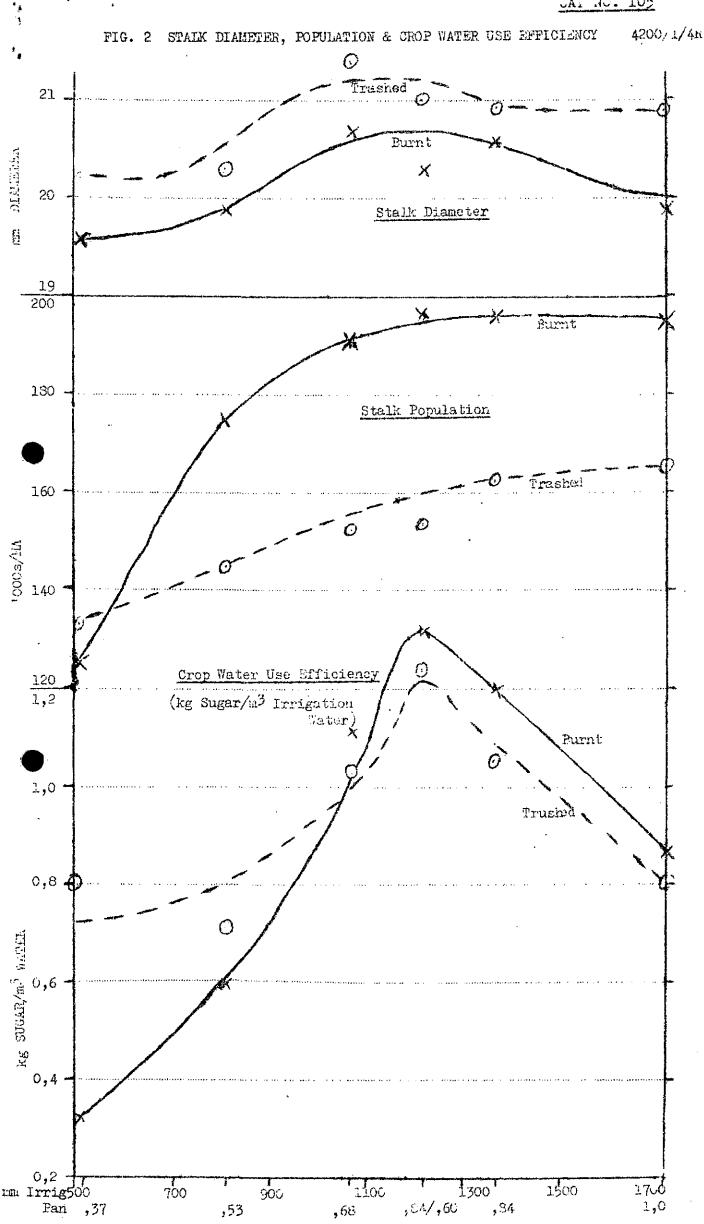
Pan Factor	1,0	0,84	,84/,60	0,68	0,53	0,37					
FN	1,78	1,84	1,78	1,72	1,74	1,77					
%₽ .	,185	,187	,188	,182	,184	,196					
∕5K	1,48	1,48	1,48	1,36	1,36	1,46					
%0a	, 239	,244	,240	,249	,296	,290					
Ang	,171	,178	,190	,175	,184	,172					
mm Water applied	1727	1372	1219	1067	813	508					
Days after irrigation	· 7 — ;	9	: 9 :	3	17	. 29					
Deficit (mm)	42,0	52,1	52,1	18,0	92,0	102,5					

No consistent effect of irrigation level could be detected on N,P,K, or Mg foliar levels. The Ca level decreased with increasing levels of irrigation. The Ca content was also consistently higher with burnt than with trashed canc as shown below.

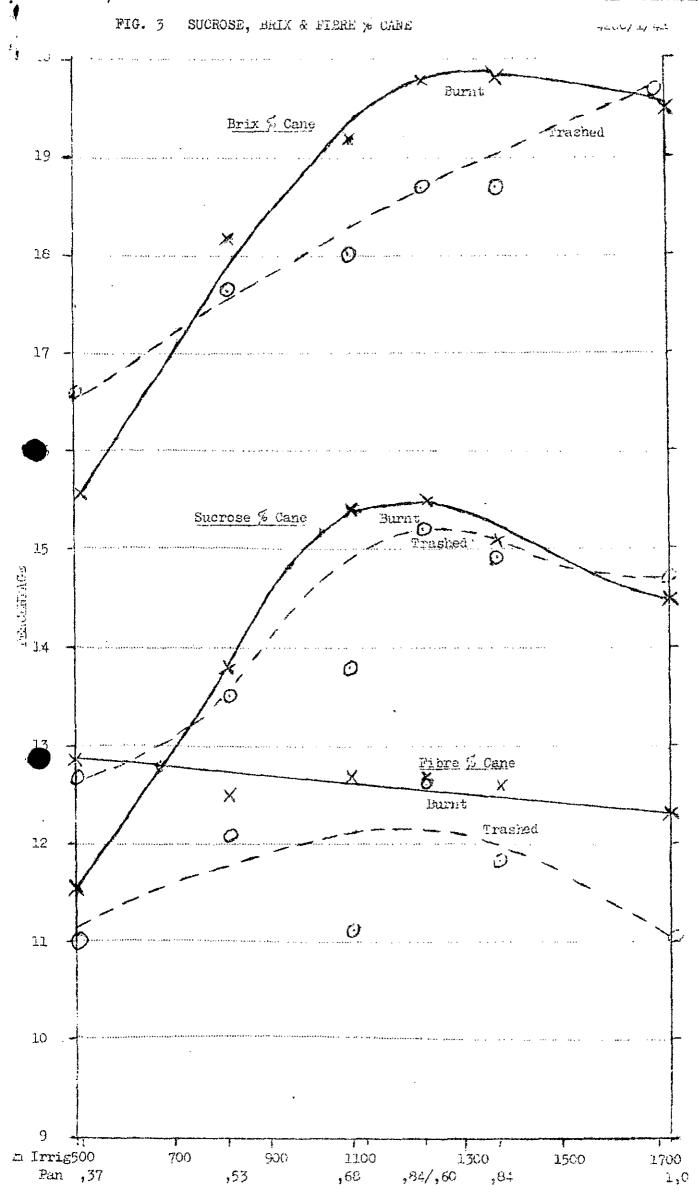
Pan Factor		1,0	,84	,8:;/,60	,68	,53	,37	MEAN
N%	.В].,79	1,58	1.,84	1,6)	1,7;	1,82	1,79
	Ţ	1,78	*1,80	1,70	1,76	1,75	*1,72	2,75
1%	в	0,184	0,189	0,194	6,190	0,185	0,198	0,182
•	T	0,186	0,185	0,181	J.135	0,184	0,195	0,186
K%	в	1,45	1,50	1,43	1,51	1,32	1,46	1,,41
	T	1,51	1,47	1,52	1,44	1,20	1,47	1,47
Ca%	В	0,250	0,254	0,246	0,269	0,303	0,320	0,274
	Т	0,229	0,234	0,232	0,229	0,286	0,259	0,245
METS	B	0,171	0,175	C , 189	0,172	6,186	2,181	0,179
	Т	0,171	0,185	0,190	0,179	0,181	0,164	0,178

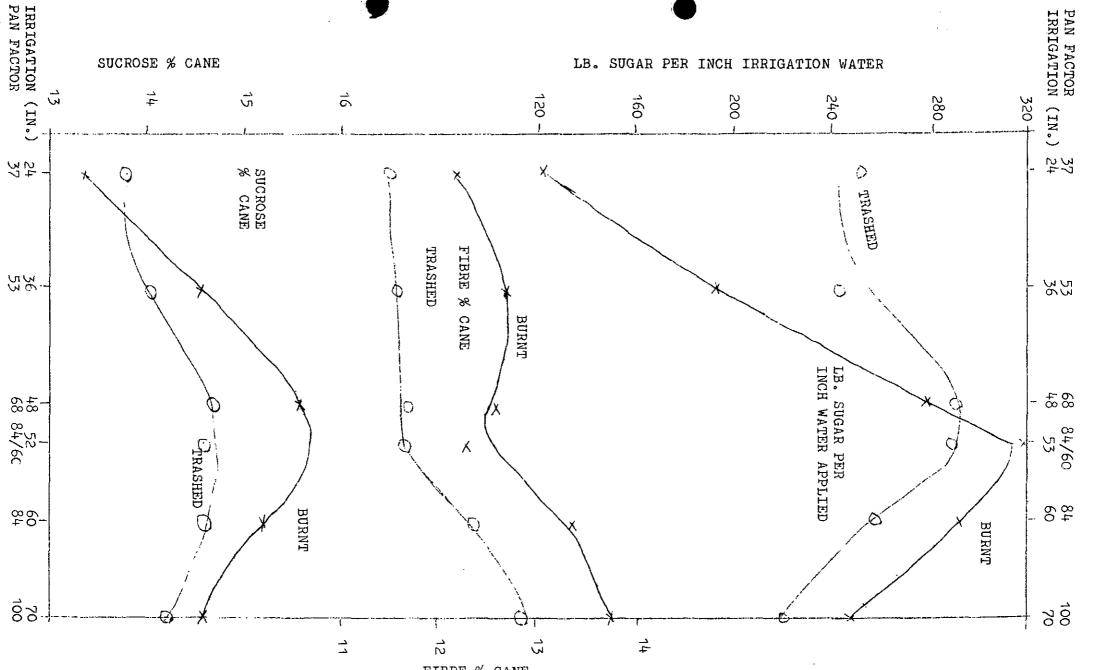
.


.


FOLIAR ANALYSIS (Sampled 23/4/71) BURNING x TRASH MANAGEMENT INTURACTION

.


۰,


•

Cat. No. 105

 ∞

FIBRE % CANE

SOUTH AFRICAN SUGAR INDUSTRY

AGRONOMISTS' ASSOCIATION

--

.

.

•	IRRIGAT	ION X T	RASH X 1	N-CARRI	ER TRIA	L 4200/	L/5R			
Catalogue No.: 105		-						• •		
This crop + - 5th I		•••	•			Scil /				_
<u>Site</u> : Expen		Station				pi-	(Ca() ₁₂)		5,5
Altitude : 410 m						0.5.%				1,3
Soll : PE		clay lo	naa			Cond.		10 s/cm))	284
Variety : NCo						Ex. K	2	3.%)		0,90
<u>Lesign</u> : Spli					•	.Ex. Ca	1	e-72) ≡•72)		6,7
Fertilizer:!		_	05			Ex. Mg	2,26			
	74	84				Ex. Na	. (д.е	e•%)		0,76
	Ireather		ngle su	ipers						
Rainfall on crop:		53	97 mm			Age: 1			>	
								71-21.1		
					is irrie					
					ie eltec					
					levels		Eatior	1. To	compar	е
urea	with an	monium	nitrate	e as 11-0	errier.					
Results :			•						•	
TABLE 1 Irrigatio	n Tevel	. <u>s</u>								
IRRIGATION	1.	:		:		-	L.S.I) .	!c.v.	SIGHT
TREATMENTS	, wi	W3	₩2*	- W4	₩5	W6	5%	1%	r's	LEVEL
	· · · · · · · · · · · · · · · · · · ·								ļ	
PAN FACTOR (NET)	11,0	0,84	0,84/	0,68	[:] 0,53	0,37	_		-	: .
	,	-,-,	0,6		- ,				ł	
IRRIGATION (MM)	1224	1020	867	714	510	306	-	-	-	-
TOTAL				:	:	÷ -	}		}	
PRECIPITATION	1821	1617	1464	1311	1107	903	-		-	-
Tens cane/ha.	120 3	120 5	113.7	108.3	87,5	65.7	6,3	9,4	6,0	*
E.R.S. % Cane					12,86			1,12		**
T.E.R.S.H.					11,24			1,65	8,3	***
Stalk count										
COCs/hectare	191,7	178,3	172,0	_180 , 0	173,4	156,1	12,8	17,8	8,1	**
Stalk diameter			• .	:					!	
(mm)	20,3	20,4	20,8	20,3	20,5	21,0	0,4	0,5	3,2	**
to Lodsing	98	92	97	59	3	0	24	33	19	*
Sucrose % cane	14,8	-	15,7	15,6			0,7	0,9	5,2	***
Brix % cane	15,6			19.9	•		1,7	2.3	8,4	N S
Fibre % cane	12,8	11,6	11,4				1,6	2,2	14,9	N S
% Furity	79,6	76,5	78,1			•	1_,0			-
£	1990			: : : · ; · ; · ;			ļ			· ·
kg Cane/m ³						: 				
irrigation	9,83	11,31	13,07	15,17	17,16	21,48	1,65	2,28	7,8	÷ ⊁ ≍ X
				:		1				
kg Cane/m ³	- 6,60	7,45	7,74	8,26	7,91	7,28	C,64	0,89	6,7	
total water				,	.,			- , - ,	- , ,	I
ig Sugar/m ³			2 60			0.70		0 50		<u> </u>
irrigation	1,19	1,40	1,68	1,94	2,20	2,39	0,22	0,31	S,8	***
	·					•				
kg Sugar/m ³	0,80	0,53:	1,00	1,05	1,02	0,81	0,10	0,14	8,2	X XX
fotal water			•	, -		: ,	1 *	•		
ومعالية ومعادية المتناف المتناف المتناف والمتناف المتناور والمراجع ومرجع										

An treatment W2, 0,84 x Pan was applied for the first S_2^1 months while 0,60 Pan was applied for the last $3\frac{1}{2}$ months.

2/.. 4200/1/5E

TABLE 2. Trash Management x Irrigation Interaction

TREATMENTS		W1	W3	W2	W4	W5	W6	MEAN	SI GHI FI - CANCE MEAN	L.S.D. 57.1% BODY OF TAELE
	B	126,9 113,7	129,7 111,3	118,1 103,5	113,4 103,3	29,7 35,3	62,7 68,8	106,8 98,5	**	6,2 8,2
E.R.S.C.	B T	11,63 12,56	11,87 11,81	13,03 12,71	12,83 12,73	13,12 12,61	10,79 11,54	12,21 12,33	NS	0,9 1,2
T.E.R.S.H.	B T	14,75 14,27	15,38 13,13	15,37 13,80	14,50 13,14	11,74 10,75	6,77 7,88	13,08 12,16	*** `	1,05 1,40
Stalk count '000s/ha	B T	200,6 162,3	200,1 156,5	184,7 159,3	208,0 152,0	191,8 155,0	171,0 141,2	192,7 154,5	ns	14,0 18,7
	B T	20,1 20,6	20,6 20,3		20,0 20,6	19,8 21,3	20,8 21,3	20,3 ·20,9	*	0,6 0,9
	B T	14,6 15,1	14,7 14,9	15,8 15,7	15,6 15,6	15,8 16,1		15,1 15,4	NS	0,8 1,1
ix % cane	B T	18,8 18,4	18,8 20,0	19,8 20,5	19,8 20,0	19,8 22,3	18,9 21,1	19,3 20,4	NS	1,7 2,2
Fibre % cane	B T	12,9 12,7	12,5 10,8	12,6 10,1	11,8 10,8	12,3 9,2	12,0 9,4	12,4 10,5	NS	1,7 2,3
% Purity	B T	77,7 -32,1	78,2 74,5	79,8 76,6	78,8 78,0	79,8 72,2		78,1 75,8		
5 Lodging	B T	99 98	95 88	96 98		12 44	0 0	60 65	ns	11 14
kg Cane/m ³ irrigation	B T	10,37 9,29		13,63 12,52		17,59 16,73		•		1,16 1,54
kg Cane/m ³ total water	B T	6,97 6,24	२,02 6,38		8,65 7,88					0,51 0,68
irrigation	B T	1,21 1,17	1,51 1,29	1,77 1,59	2,03 1,84	2,30 2,11	2,21 2,58	,		0,16 0,21
kg Sugar/m ³ tal water	B	0,81 0,73	0,95 0,81	1,05 0,94	1,11 1,00	1,06 0,97	0,75 0,87	0,96 0,90	***	0,08 0,10
Smut(whips'000s/ ha during season)	B T	15,6 15,2	14,1 17,6	. 16,9 18,4	· 21,9 31,4	36,1 57,9	10,9 28,7	19,3 28,2	-	-

Increasing the <u>level of irrigation</u> led to highly significant increases in the yield of both cane and sugar whether the cane was trashed or burnt. The response was, however, greater when the trash was burnt (Fig. I).

At optimum levels of irrigation burning was highly superior to trashing. At the lower and highest levels, however, there was little yield advantage to burning while at the lowest level, trashing was superior to burning.

If trash is burnt the optimum level of irrigation appears to be treatment W2 (a consumptive-use figure of 84% for the first $8\frac{1}{2}$ months and 60 for the last $3\frac{1}{2}$ months), although treatment W5 produced the highest yield of sugar per unit of irrigation water applied.

Increasing irrigation level increased <u>stalk counts</u> but tended to reduce <u>diameter</u> of canes. Similarly burning increased the number of canes but tended to reduce diameter particularly at the lower levels of irrigation (Fig. II). Sucrose %, as in the past, peaked at the intermediate levels of irrigation and it is worth noting that the drying-off of treatment 2 resulted in a highly significant increase in the sucrose content. (The sucrose content of treatment 2 was 0, 3% higher than that of treatment 3).

Although <u>fibre content and purity</u> tended to increase with burning, E.R.S.C., like sucrose %, was unaffected. Fibre content and purity both tended to be increas by increasing levels of irrigation.

<u>Water use efficiency</u> expressed as kg sugar produced per m² irrigation water applied, tended to peak with an application of 510 rm of water (net) where trash was burnt, and with 306 mm where it was not burnt. TABLE 3. <u>Urea vs. Armonium Nitrate</u>

	UREA	ANDJONIUM NITRATE	57	L.S.D. 1%	SIGNI FI CANCE
Tons cane/hectare	102,9	102,3	2,5	3,4	NS
Estimated recoverable sugar $\%$ cane	12,35	12,19	C,36	0,48	NS
Tons estimated recoverable sugar per hectare	12,80	12,44	0,43	.0,57	NS
Stalk count '000s/hectare	172,0	175,2	5,7	7,6	NS
Stalk diameter (millimeters)	20,6	20,5	0,3	0,4	ns
% Lodging	55	61	4	6	**
Sucrose % cane	15,3	15,2	0,3	0,4	NS
Brix % cane	19,7	20,0	0,7	0,9	NS
Fibre % cane	11,0	11,0	0,7	0,9	**
7 Purity	77,7	76,0	! _	-	-
kg Cane/m ³ irrigation	14,81	24,10	0,47	0,70	NS
kg Cane/m ³ total water	7,57	7,52	0,21	0,28	NS
kg Sugar/m ³ irrigation	1,82	1,73	0,06	0,09	• NS
kg Sugar/m ³ total water	0,94.	0,91	0,03	0,04	NS
Smut (whips '000s/ha during season)	. 22,7	24,7	. –	-	-

Lodging was apparently not affected by trash management although it was significantl affected by irrigation level, being considerably higher (than treatment 4) at the 3 highest levels of irrigation and negligible at the 2 lowest.

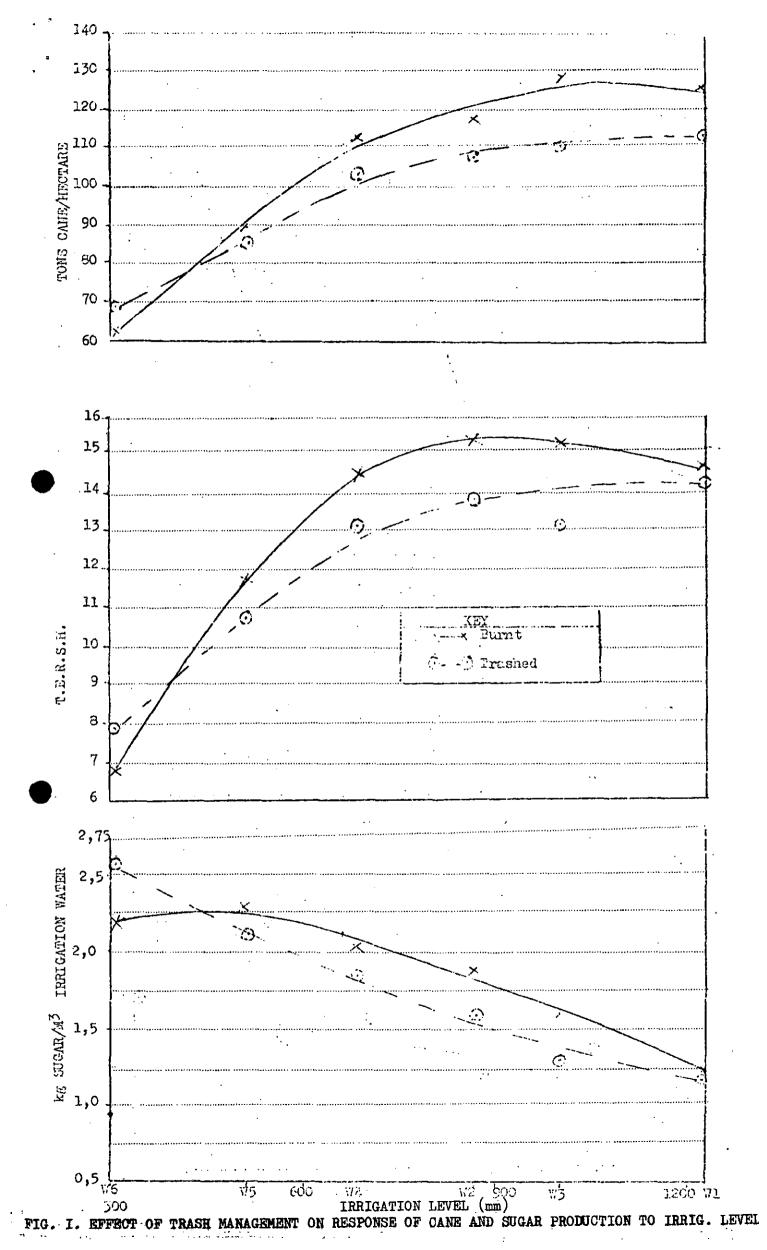
Nitrogen carrier

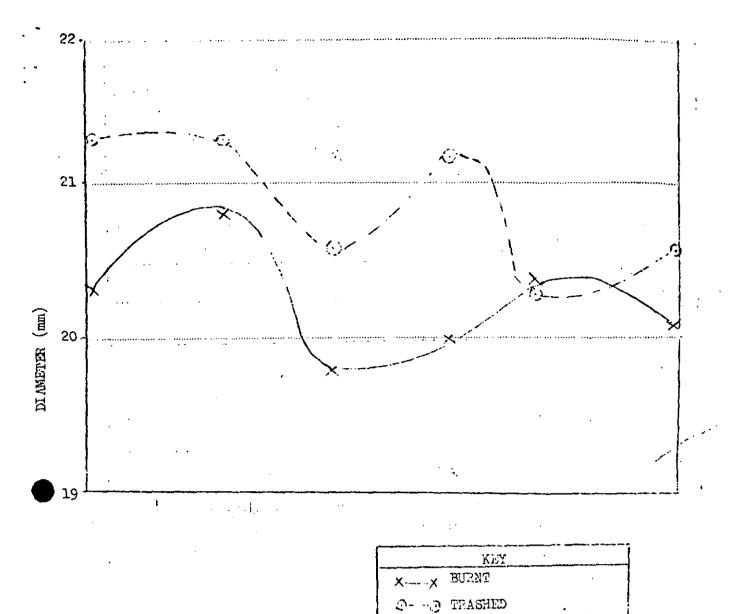
Only fibre content and lodging were affected by nitrogen carriers. The application of urea resulted in a higher fibre content which apparently resulted in less lodging than the application of amtonium nitrate.

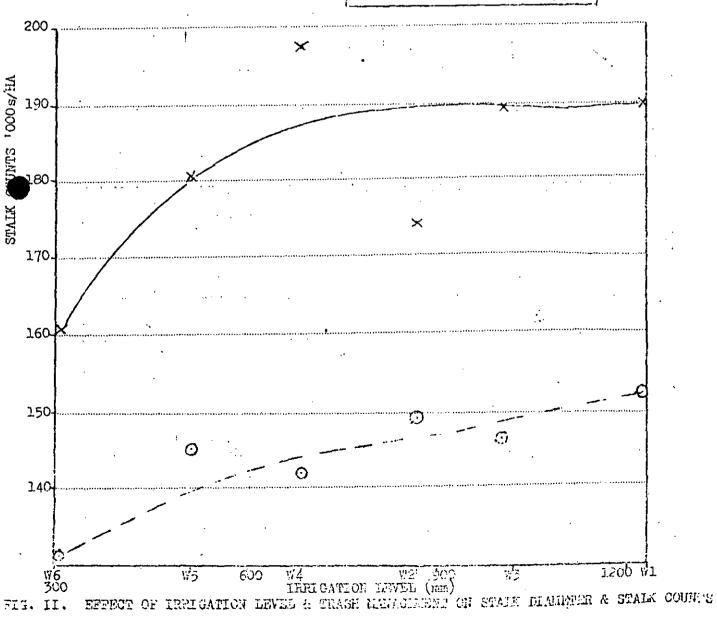
The occurrence of snut was highest in cane irrigated according to a consumptive use factor of 0,53 (Fig. V) but was similar in the driver and wetter treatments.

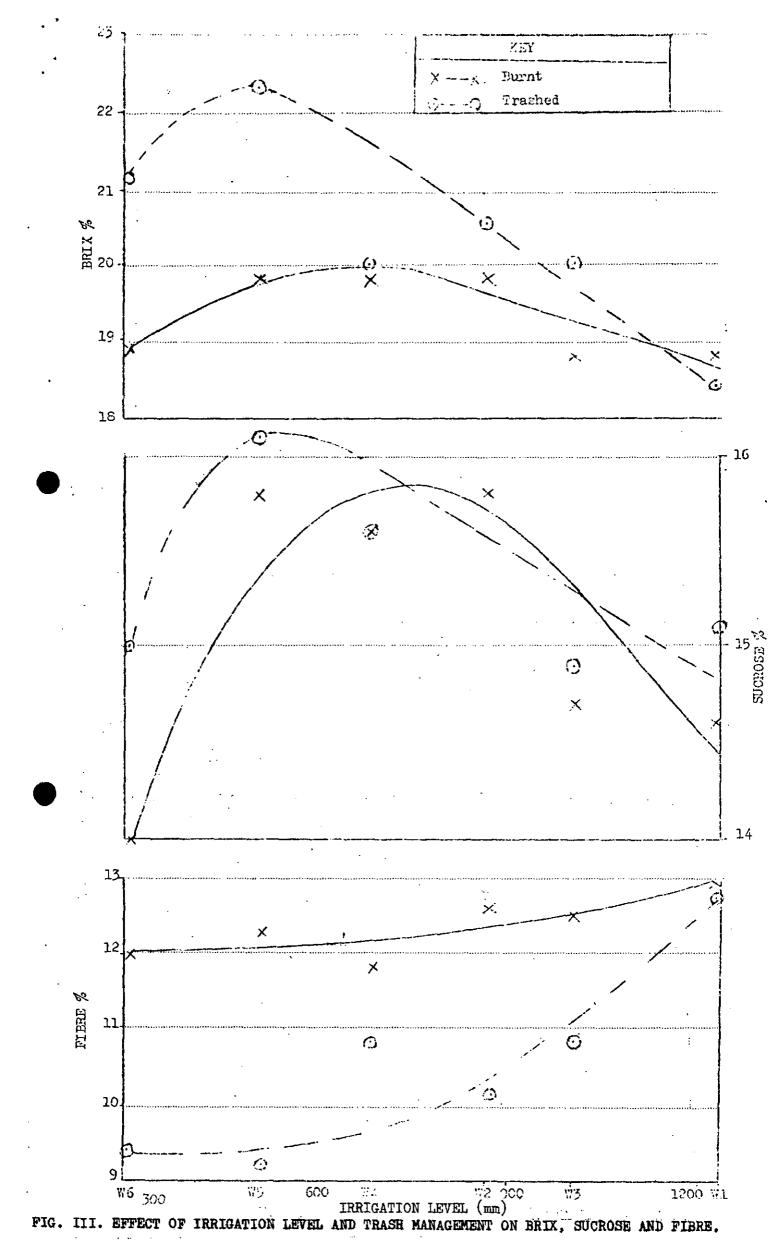
Burning trash seens to reduce the occurrence of gaut.

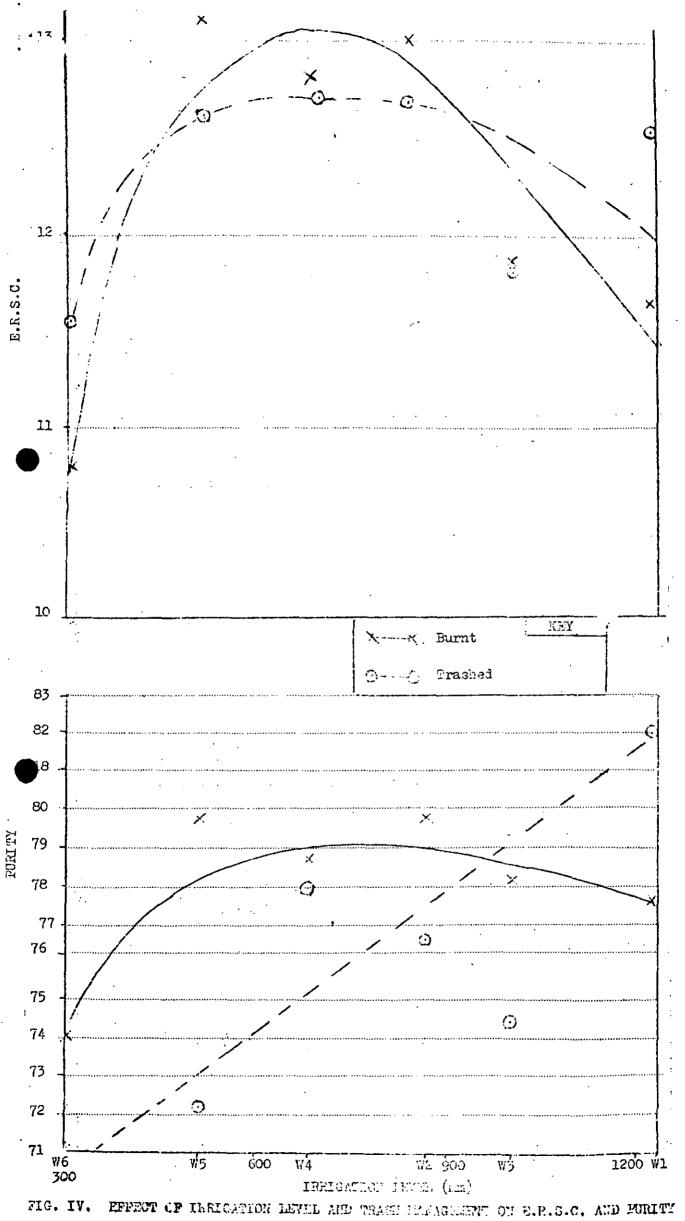
3/...

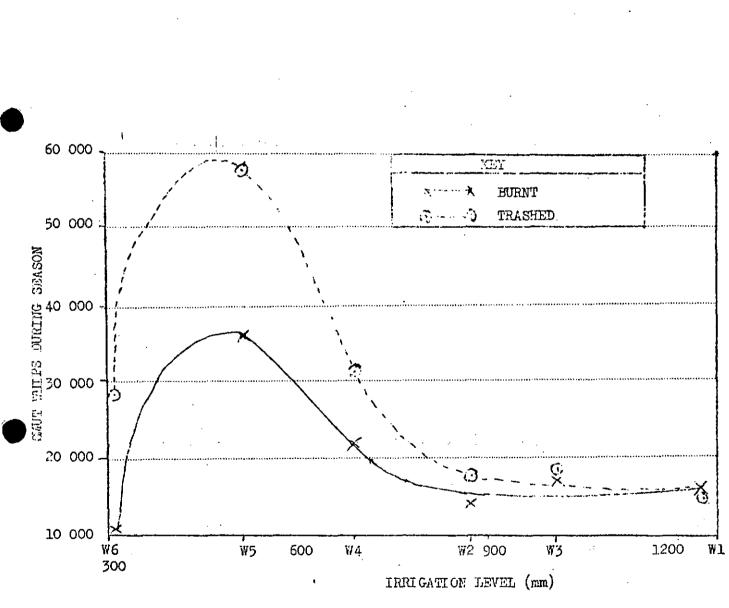

4/.. 4200/1/.it

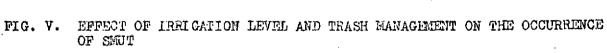

Foliar analysis


l


No consistent effect of irrigation level or trash management could be detect i on any of the nutrients studied (Table 4). TABLE 4. Foliar Analysis (Sampled 19/4/75)


		PAN FACTOR									
TUTRIFNT	B/T	1,0	0,84	0,84/60	C,68	0,53	0,37	MÉAN			
II %	† B	1,84	1,86	1,82	1,90	1,88	1,92	1.1,87.			
	Ť	1,92	1,87	1,90	1,25	1,00	1,87	1,89			
F %	В	0,24	0,22	0,23	0,24	0,22	0,24	0,23			
	t T	0,24	C,22	0,23	0,24	0,22	0,24	0,23			
K %	ъ.,	1,42	1,48	1,40	1,42	1,38	1,52	1,46			
÷	T j	1,46	1,52	1,51	1,56	1,43	1,50	1,50			
Ca %" '	B	0,30	0,28	0,31	0,30	0,28	с,29	0,29			
	T	0,28	0,23	0,29	0,28	0,28	0,26	0,28			
e %	B	0,18	0,18	:0,20	0,19	0,20	0,18	0,19			
	T '	0,20	0,21	0,21	0,19	0,19	0,20	0,20			





SOUTH AFRICAN SUGAR INDUSTRY AGRONOMISTS' ASSOCIATION

. . . .

IRRIGATION X TRASH X N-CARRIER TRIAL 4200/1/5R

Catalogue No: <u>This crop</u> : <u>Site</u> : <u>Altitude</u> : <u>Soil</u> : <u>Variety</u> : <u>Design</u> : <u>Fortligen</u> :	105 5th ratoon R.S.A. Expt 410 m P E 1 sandy NCo 376 Split plot N	clay loam	Soil and pH O.M.% Cond. Ex K Ex Ca Ex Mg Ex Na	alysis: (CaCl ₂) (mmhos/cm) (m.e.%) " "	5,5 1,3 284 0,90 6,7 2,26 0,76
<u>Fertlizer</u> : Level (kg/ha) Carrier Rainfall on crop:	174 Treatment	P_0 84 S.supers 597 mm	Age: 11	,7 months .12.71 - 21.11	·

<u>Object</u>: To determine the effect of various irrigation regimes on cane yield and recoverable sugar. To compare the effects of burning with a trash blanket and any interaction with levels of irrigation. To compare urea with ammonium nitrate as N-carrier.

Results

TABLE 1 Irrigation Levels

:

IRRIGATION TREATMENTS	W1	₩3	₩2*	W4	₩5	₩6	L.S.I 5%). 1%	C.V.	SIGNIF. LEVEL	
PAN FACTOR (NET)	1,0	0,84	0,84/ 0,6	0,68	0,53	0,37	-	_	-	-	
IRRIGATION (MM)	1224	1020	867	714	510	306	-	-	-	-	
TOTAL PRECIPITATION	1821	1464	1617	1311	1107	903	-	-	-		
Tons cane/ha.	120,3	120,5	113,3	108,3	88,5	65,7	6,8	9,4	6,0	***	
E.R.S. % Cane	12,09	11,84		12,78		11,17	0,81	1,12	7,1	**	
T.E.R.S.H.	14,51	14,26	14,58	13,82	11,24	7,32	1,19	1,65	8,3	***	
Stalk count '000s/hectare	181,7	178,3	172,0	180,0	173,4	156,1	12,8	17,8	8,1	*?	
Stalk diameter	20,3	20,4	20,8	20,3	20,5	21,0	0,4	0,5	3,2	* .⁄:	
% Lodging	98	92	97	59	3	0	24	33	19	*	
Sucrose % cane	14,8			15,6	16,0	14,5	0,7	0,9	5,2	***	
Brix % cane	18,6		20,1		21,0	20,0	1,7	2,3	8,4	NS	
Fibre % cane % Purity	12,8	11,6	•		10,7	10,7	1,6	2,2	14,9	NS	
	79,6	76,3	78,1	78,4	76,2	72,5		· · · · · · · · · · · · · · · · · · ·	_	-	
kg Cane/m ³ irrigation	9,83	11,81	13,07	15,17	17,16	21,48	1,65	2,28	7,8	***	
kg Cane/m ³ total water	6,60	7,45	7,74	8,26	7,91	7,28	0,64	0,89	6,7	**	
kg Sugar/m ³ irrigation	1,19	1,40	1,68	1,94	2,20	2,39	0,22	0,31	8,8	***	
kg Sugar/m ³ Total water	0,80	0,88	1,00	1,05	1,02	: 0 ,81	0,10	0,14	ε,2	** *	

An treatment W2, 0,84 x Pan was applied for the first $8\frac{1}{2}$ months while 0,60 Pan was applied for the last $3\frac{1}{2}$ months.

significant cubic function. This was due to a relatively small increase in tons cane per inch water applied from W6 to W5 and from W3 to W1. Larger increases were obtained from W5 to W4 and from W4 to W3. This is shown below.

Treatment	Tons Cane/a cr e Increment	Additional Water (in.)	Tons Cane/inch Water Increment
W1 - W3	0.9	8	0.1
W3 - W4	10.8	8	1.4
W4 - W5	7.1	6	· · 1.2
W5 - W6	3.5	6	0.6

The small increment from Wl to W3 is evidently an example of the law of diminishing returns. On the other hand, the small increment from W5 to W6 is probably due to the fact that the high degree of stress imposed on the crop resulted in such a degree of foliage destruction that each irrigation was followed by a period of canopy renewal before additional cane could be formed. This is evident from weekly height measurement graphs which show a timelag following each irrigation in W6 before growth is resumed. This was not observed in the wetter treatments.

The selection of the most economic level of irrigation can be determined from the data on tons cane/inch water. Although W6 (0.37 pan) actually gave the highest yields per inch of irrigation water (1.37 tons/inch) this was due to the fact that there was a good rainy season (23.6 in. on the crop) and most of the growth was made on rain. W3 (0.84 pan) followed by W4 (0.68 pan) gave the highest yields per inch total water (rain + irrigation): 0.85 and 0.79 tons cane per inch total water. W3 (0.84 pan) thus appears to be the most economic treatment.

Lodging increased markedly with increasing irrigation: from nil for W6 & 5, 4% for W4 to 34% for W3 and 61% for W1.

<u>Nitrogen Carrier</u>	Urea	Sulphate of Ammonia	C.V %	L.s.d. %	L.s.d. 1%
Tons cane/acre	51.3	52.7	5.3	1.1	1.5
Sucrose % cane	14.4	14.0	5.5	0.3	0.4
Tons sucrose/acre	7.33	7.37	7•3	0.22	0.29
Stalk count ('000s/acre)	53.4	53.2	4.0	0.9	1.2
Lodging	13	20	95	6	9
Height	7.5	7•5	-	-	-

Sulphate of ammonia resulted in significantly higher cane yields (1.4 tons/acre) than urea but significantly lower sucrose content (0.4%) to give virtually identical yields of sucrose per acre with urea. Carrier had no effect on stalk count but urea produced significantly less lodging than sulphate of ammonia (Experiment 6400/2 also showed identical trends in the comparison of urea and sulphate of ammonia).

- 2 -

-	Wl	W2	W3	W4	W5	W6	Mean
	,. <u></u>		TON	S CANE/	ACRE		
Urea Sulphate of Ammonia Mean	61.7 64.1 62.9	49.9 52.3 51.1	61.1 62.8 62.0	50.9 51.5 51.2	44.0 44.2 44.1	40.0 41.2 40.6	51.3 52.7
	L.s.	d.: ba	ody of	table (ૠ) 2.8	(1%)	3.7
			SUC	ROSE % (CANE		
Urea Sulphate of Ammonia Mean	13.9 14.3 14.1	13.9 13.2 13.5	13.9 14.0 14.0		15.4 14.8 15.1	14.2 13.7 14.0	14.4 14.0
	L.5.	d.: bo	ody of	table (‰) 0.8	(1%)	1.0
			TONS	SUCROSI	E/ACRE		
Urea Sulphate of Ammonia Mean	8.60 9.17 8.88	6.94 6.86 6.90	8.48 8.81 8.65	7.48 7.14 7.31	6.77 6.54 6.65	5.72 5.68 5.10	7•33 7•37
	L.s.	d.: boo	dy of t	able (5%	6) 0.54	(1%)	0.72
Urea Sulphate of Ammonia Mean	52. 1 54.9 53.5	54.6 52.3 53.5	<u>5</u> 1.1 53.2 .52.2	TALK CO 54.9 53.3 54.1		55•5 54•1 54•8	53•4 53•3
,	L.s.	d.: bo	ody of	table (⅔) 2.1	(1%)	2.8
Urea Sulp hate of Ammonia Mean	51 71 61	1 1 1	24 44 34	LODGINO 3 5 4	0 0 0	0 0 0	13 20
	L.s.	d.: 1	oody of	table ((5%) 16	(1%)	21

Interaction: Irrigation x Carrier.

The interaction Irrigation x Carrier was significant for stalk count only; however, the linear function of Irrigation x Carrier interaction was significant for all factors except cane yield. Details of this interaction are as follows:

Although there was no overall difference between urea and sulphate of ammonia in sucrose yield/acre, sulphate of ammonia **significantly outyield**ed urea at the highest level of water application. At lower water applications, differences were not significant, but tended in the opposite direction, as shown on the graph. These trends are brought out even more markedly in the stalk count plots, where the sulphate of ammonia treatments had a higher stalk count in the wet treatments, but urea higher in the dry treatments. It is difficult to visualize this as a genuine effect and it is probable that the variable stand originally obtained in the experiment (due to planting under excessively hot conditions) resulted in the variable populations obtained.

æ

SOUTH AFRICAN SUGAR INDUSTRY

AGRONOMISTS' ASSOCIATION

<u>Cat. No</u> : 105	Irrigation x	trash x N carrier trial 42	00/1/6R		•
This crop:	6th Ratoon		Soil A	nalysis:	
<u>Site:</u>	Experiment Sta	tion	pH (C	aci ₂)	5,5
Altitude:	410m		о.м. %	-	1,3
Soil:	PEl sandy cl	ay loam	Cond.	(mmhos/cm)	284
Variety:	NCo 376		Ex. K	(m.e.%)	0, <u>9</u> 0
Design:	Split plot		Ex. Ca	(m.e.%)	6,70
Fertilizer:	N	P205	Ex. Mg	; (m.e.%)	2,26
Level (kg/ha)	174	84	Ex. Na	(m.e.%)	0,76
Carrier	Treatment	Single supers (Age:	12 months	
Rainfall on crop:	416,7 mm			(21/11/72-23/11	/73)
<u>Object</u> :	To determine t	ne effect of various irrigs	tion re	gimes on cane y	ield
	and recoverabl	e sugar.			
	·m-			Jawlach and and	4 1 1 1 1 1

To compare the effects of burning with a trash blanket and any interaction with levels of irrigation.

To compare urea with ammonium nitrate as N carrier.

Results:

Tatle 1 Irrigation levels

IRRIGATION	Wl	W3	W2+	W4	W5	W6	C.1).	C.V.	Signif
TREATMENTS				ļ			5%	1%		level
PAN FACTOR (NETT)	1,0	0,84	0,84/ 0,6	0,68	0,53	0,37				
IRRIGATION (MM) TOTAL	1581	1275	11.73	1020	714	459				
FRECIPITATION (MM)	1998	1692	1590	1437	1131	876				
Tonnes cane/ha E.R.S. % Cane T.E.R.S./ha Stalk count Os/hectare	126,8 13,12 16,66 171,2	116,9 12,82 15,22 169,0	110,0 13,01 14,07 167,4	84,7 11,72 9,99 171,6	48,4 11,82 5,75 160,9	30,6 9,34 2,88 135,9	9, 61 1,16 1,50 12,82	13,28 1,61 2,07 17,73	12,37 8,40 15,97 7,11	*** *** *** *
% lodging Sucrose % cane Brix % cane Fibre % Cane % Purity	56,2 15,1 17,0 13,8 88,5	32,2 14,9 16,9 13,6 88,3	32,5 14,8 16,8 13,3 87,6	0 13,7 15,9 12,7 86,0	0 13,8 16,0 12,9 86,2	0 11,4 13,8 11,7 82,2	- 1,11 1,01 0,59 2,24	- 1,54 1,40 0,81 3,10	- 6,48 4,27 6,90 3,32	- *** *** ***
kg cane/m ³ irrigation kg cane/m ³	8,02 6,35	9,17 6,91	9,38 6,92	8,30 5,89	6,78 4,28	6,67 3,49	-	-	-	-
total water kg sugar/m ³ irrigation kg sugar/m ³ total water	1,06 0,84	1,19 0,90	.1,20 0,89	0,98 0,70	0,81 0,51	0,63 0,33	-		-	-

⁺In treatment W2, 0,84 x Pan was applied for the first $8\frac{1}{2}$ months while 0,60 Pan was applied for the last $3\frac{1}{2}$ months.

Sucrose % cane tended to be highest at the bigh levels of irrigation (Fig. 2). Brix % and Fibre % showed the same trends and were increased by burning.

There was a decrease in purity with decreasing industion.

Lodging was increased by increasing invigation.

Smut was apparently unaffected by inclusion or trashing.

Table 3. Urea vs. Amnonium nitrate

1

	Urea	Ammonius nitrate	<u>.</u>	17	SIGNIFICANCE
Tons cane/hectare	84,26	38,19	4,36	5,81	ws.
Estimated recoverable sugar % cane	11,96	11,99	0,41	0,55	NS
Tons estimated recoverable sugar % cane	10,52	11,00	0,70	0,94	NS
Stalk counts '000's/hectare	1.62,71	1.62,71	4,73	Е,30	NS
% Lodging	10,5	20,8		-	-
Sucrose 🖇 cane	13,93	13,94	0,37	0,49	NS
Brix % cane	17,1	16,1	0,28	0,37	1/IS
Fibre % cane	13,0	13,0	0,37	0,49	NS ·
% Purity	86,4	86,6	1,18	1,57	NS

Nitrogen carrier

There were no significant differences between mitrogen carriers (TABLE 3). Foliar analysis

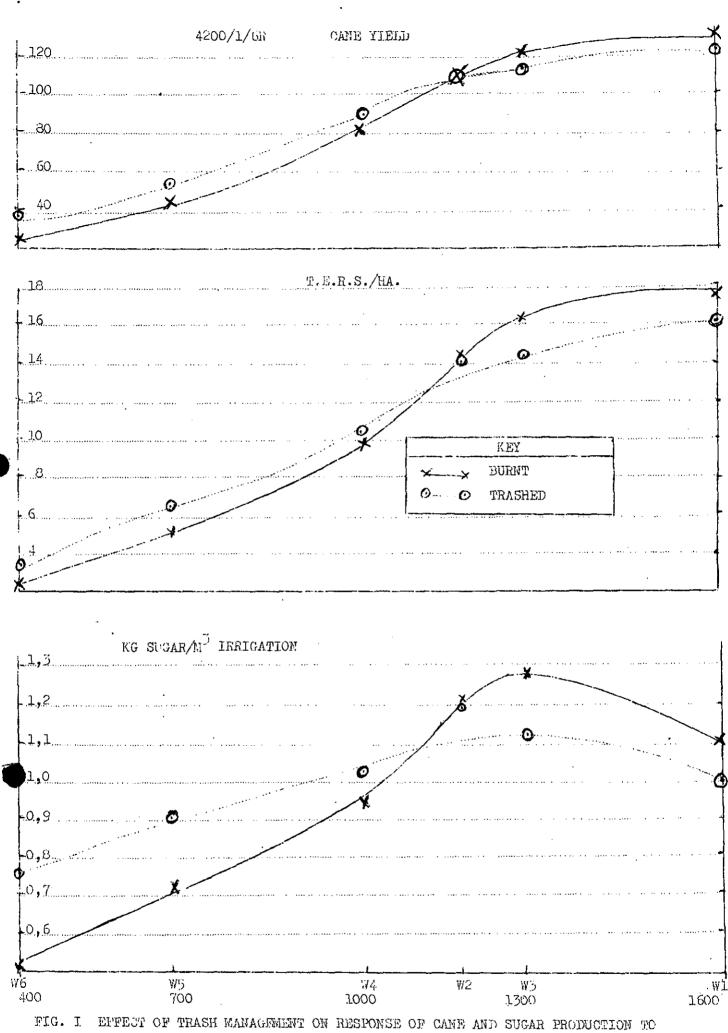
No consistent effect of invigation level on trash management could be detected on any of the nutrients studied.

			PAH FACEO							
NUTRIENT	B/T	1,0	0,34	0,84/0,6	0,68	0,53	0,37	Mean		
n %	B T	1,85 1,82	1,31 1,73	1,84 1,82	4: و1. 14 و1.			1,94° 1,90		
P %	B T ·	0,22 0,22	0,22 0,20	0,22 0,22	0,21 0,22	0,22 0,22	0,22 0,22			
K %	B ጥ	1,36 1,35	1,42 1,44	1,45 1,50	1,94 1,42		1,37 1,42			
Ca	B T	0,31 0,29	0,23 0,23	0,25 0,28	0,02 0,05		0,47 0,42	0,32 0,31		
Mg	B T	0,20 0,20	0,18 0,18	0,18 0,13		0,21 0,20	0,18 0,21			

Table 4 Foliar analysis

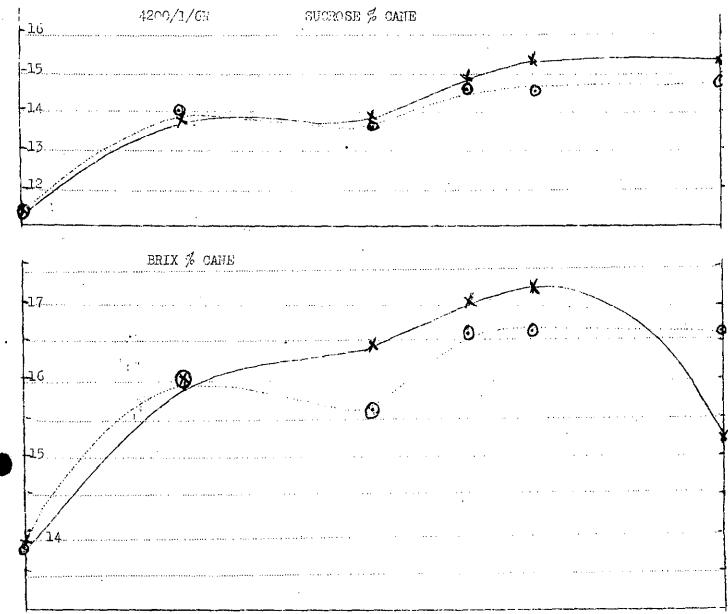
2/...4200/1/6R

Table 2 Trash Management x Irrigation Interaction


TREATMENIS	•	Wl	W3	₩2	₩4	W5	<i>716</i>	Mean	Signif. Mean	C.D. 5%,1%, Body of Table
Tonnes cane per hectare	B T	131,3 122,4	121,1 112,7	109 ,9 110,0	31,0 38,4	43,2 53,5	24,9 36,4	85;2 87,2	NS	22,49 29,94
E.R.S. % C.	B T	13,28 12,97	13,40 12,60	1 2, 90 1 2, 73		11.,62 12,02	9,33	12,04	NS	1,30 1,74
T.E.R.S./ha	B T	17,46 15,87	16,19 14,24	14,1 3 14,01	0,59 10,39	5,05 6,46	2,35	10,80 10,73	NS	3,59 4,78
Stalk count '000s/hectare	B T	188,0 154,4		187,7 147,1	191,1 152,2	173,2 148,8	135,4	176,7 148,7	***	26,34 35,07
Sucrose % cane	B T	15,31 14,82	15,33 14,54	14,92 14,61	13,60 13,58	13,68 13,92	11,38 11,32	14,07	NS	1,23 1,63
Brix % cane	B T	15,2 16,6	17,2 16,6	17,0 16,6	16,2 15,6	15,0 15,0	13,9 13,8	16,3 15,9	**	1,07 1,43
Fibre % cane	B ፓ	14,1 13,4	13,8 13,2	13,6 12,9	13,2 12,1	13,4 12,3	12,0 11,5	13,4 12,6	***	0,84 1,12
% Purity	В Т	88,0 89,0	89,0 87,7	86,6 38,0	85,0 87,1	85,5 86,8	82,0 82,4	86,1 86,8	NS	2,93 3,90
Lodging %	B T	56,9 55,6	28,8 35,6	22,5 42,5	0	0 0	0	18,0 22,3	-	-
Smut whips '000s/ha	B T	29,01 41,10	35,75	03,80 45,57	53,29 65,02	46,89 60,44	20,69	35,42 47,08	-	-
kg cane/m ³ irrigation	B T	8,30 7,74	9,50 8,34	9,36 9,38	7,94 8,67	6,05 7,49	5,42	7,76 8,34	-	
kg cane/m ³ total water	B T	6,57 6,13	7,16	6,91 6,92	5,64 6,15	3,82 4,73	2,84	5,49 5,79		
kg sugar/m ³ irrigation	B T	1,10 1,00	1,27 1,12	1,20 1,19	0,94	0,71	0,51	0,96 1,00	-	
kg sugar/m ³ total water	B T	0,87 0,79	0,96 0,84	0,89 0,88	0,67	0,45 0,57	0,27 0,39	0,68	-	_

Increasing the <u>level of irrigation</u> led to highly significant increases in the yields of both cane and sugar whether the cane was trashed or burnt. The response was, however, greater when the trash was burnt (Fig. 1).

At optimum levels of irrigation burning was highly superior to <u>trashing</u> except where cane was dried off (W2). Burning was most advantageous at the highest level of irrigation and trashing most advantageous at the lowest levels.


High levels of irrigation produced higher yields of sugar per unit irrigation water applied.

Irrigation had little influence on <u>stalk counts</u> except at the lowest level where counts were considerably lower. Trashing reduced stalk counts at high levels of irrigation.

IERIGATION LEVEL

•

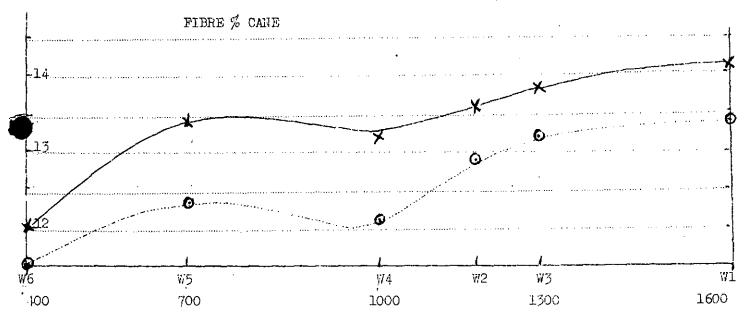


FIG. II EFFECT OF TRASH MANAGEMENT OF QUALITY OF CANE.

えま