	SOUTH AFRICAN SUGAR INDUS	TRY AGRONOMIS	STS' ASSOCIATI	OŇ				
Catalogue: Object:	$\frac{3300/43}{1194}$ BAYLETON S To determine the optimum c as a sett dip for the cont	ETT DIP CONC oncentration rol of smut	of Bayleton	(triadimefon) seedcane.				
This crop:	Plant <u>A</u>	<u>ge</u> : 11,9 m	onths (7.9.78	to 4.9.79)				
Location:	RSA Experiment Station, Ku	du Block H14	-15	-				
Soil type:	P.1 sandy loam derived from	P.1 sandy loam derived from gneiss						
Design:	Randomised blocks, 4 repli	oations						
Variety/Spaci	ng: NCo 376 in 1,5 m rows		· · · ·					
Fertiliser:	(kg/ha) N 120	$\frac{P_2O_5}{100} + \frac{K}{6}$	2 ^{0.} 0					
Rainfall:	70.7 mm <u>I</u>	rrigation:	880 mm	, , , , , , , , , , , , , , , , , , ,				
<u>Treatments</u> :	Three concentrations of Ba control as a cold water se seedcane. The Bayleton wa been inoculated with smut being included to simulate	tt dip for t s used to tr or uninocula	he control of eat setts whi ted, the form	smut in ch had either				
	The Bayleton concentration 1. Control - no Bayleton 2. Bayleton @ 0,0125% a. 3. Bayleton @ 0,025% a.i 4. Bayleton @ 0,050% a.i	i. $(\frac{1}{2} \times \text{recomen})$	mmended conc ded conc.)	.)				
Conduct:	(a) A Bayleton 25% E.C. fo one-minute dip.	rmulation wa	s used as a c	old water				
	(b) Inoculated setts were suspension after treat			ore ,				
	(c) Nett plots were separa to act as a smut-free	•		f N 52/219 I				
RESULTS:				• •				
a a construction and a second second second	of treatments on smut develo	opment in the	plant crop w	ere as				
• .		Smut whip	s per ha	• •				
		Inoculated	Uninoculated	· · •				

9

1

≠ ₹

> * : • *•

	Smut whips per ha			
••	Inoculated seedcane	Uninoculated seedcane		
No Bayleton dip Bayleton @ 0,0125% a.i. Bayleton @ 0,025% a.i. Bayleton @ 0,050% a.i.	37 821 1 667 1 090 321	1 346 0 0 1'218		
Means	10 225	641		

. Seedcane inoculation caused a severe incidence of smut in the plots grown from inoculated seedcane, whereas smut incidence was normal in those plots which had been grown from uninbculated seed.

Even the lowest concentration of Bayleton had a marked effect in controlling smut development in cane grown from inoculated setts, and increasing concentrations had a linear effect in reducing smut incidence. Using Bayleton at 0,050% a.i. (= 500 p.p.m. a.i.) reduced smut by over 99% in the seedcane inoculation treatments.

In the plots grown from uninoculated seedcane, which represented normal planting conditions using certified seed, the fungicide had the effect of completely eliminating smut even when used at half-strength. The presence of smut in the double-strength treatment was anomalous and cannot be explained; it was probably due to some fault in the conduct of the experiment at the time of planting.

The effects of treatments on yield and quality are summarised in the following table :-

	C _a ne	ERC%	TERC
	t/ha	cane	per ha
Inoculated Control - no Bayleton Dipped in Bayleton Significance	138,74 163,70 **	13,08 12,30 *	18,26 20,13 *
Unincoulated Control - no Bayleton Dipped in Bayleton Significance	158,30 162,43 N.S.	12,30 12,50 N.S.	19,46 20,35 N.S.
Interaction	N.S.	N.S.	N.S.
Trial mean	159,43	12,47	19,89
S.E. plot <u>+</u>	15,22	0,59	2,29
S.E. mean <u>+</u>	7,61	0,30	1,14
C.V.%	9,55	4,74	11,49

The different Bayleton concentrations had no effect on yield or quality, and they have been meaned in the above table for comparison with controls.

Results clearly showed the effect of severe smut infection in reducing cane yields, and also showed the benefit derived from dipping in Bayleton, which increased yields by 25 t/ha. The relatively low level of infection in the cane grown from normal uninoculated setts reduced yields by a small and nonsignificant amount, but even so there was evidence of an improvement from the Bayleton dip as a result of complete smut control.

Heavy smut infection improved ERC% cane, but not to the extent that it compensated for loss in cane yield.

Bayleton treatment increased sugar yields by 1,87 TERC/ha and 0,89 TERC/ha in cane grown from inoculated and uninoculated seed respectively.

KEC/October, 1979.

- 2 --

SOUTH AFRICAN SUGAR INDUSTRY

12 Cepiés

AGRONOMISTS' ASSOCIATION

-	AGRONOMISTS ASSOCIATION
3300/43	BAYLETON SETT DIP CONCENTRATIONS
Catalogue:	1194
<u>Object</u> :	To determine the optimum concentration of Bayleton (triadimefon) as a sett dip for the control of smut in seedcame.
This crop :	First ration Age: 12:1 months (4.9.79 to 8.9.80)
Location :	ZSA Experiment Station, Kudu Block H14-15
Soil Type :	P.1 sandy loam_derived from gneiss
Design :	Randomised blocks, 4 replications
Variety/spacing :	NOO 376 in 1,5m rows
Fertiliser (kg/ha) :	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Reinfall :	774 mm Irrigation: 968 mm
Creatments :	Three concentrations of Bayleton were compared with an untreated control as a cold water sett dip for the control of smut in seedcane. The Bayleton was used to treat setts which had either been inoculated with smut, or uninoculated, the former treatment being included to simulate severe soil infection.
	The Bayleton concentrations tested were as follows :
	 Control - no Bayleton Bayleton @ 0,0125% (125 ppm) e.i. (¹/₂ x rec. conc.) Bayleton @ 0,025% (250 ppm) a.i. (recommended conc.) Bayleton @ 0,050% (500 ppm) a.i. (2 x rec. conc.)
Conduct :	(a) Bayleton 25% E.C. formulation was used as a cold water one-minute dip.
	(b) Inoculated setts were dipped in a fresh smut spore suspension after treatment with Bayleton.
\bullet	(c) Nett plots were separated by three guard rows of N 52/219 to act as a smut-free barrier between plots.
	data from the first ratoon crop are shown in the attached together with smut records.
(a) <u>Smut incidence</u> . throughout the commut incidence for would normally be	ourse of the trial, with the result that the increase in rom plant to first ration was considerably greater than
In the plant crop effect in control	p, even the lowest concentration of Bayleton had a marked lling smut development in cane grown from incoulated setts, oncentrations had a linear effect in reducing smut incidence.

•

ł

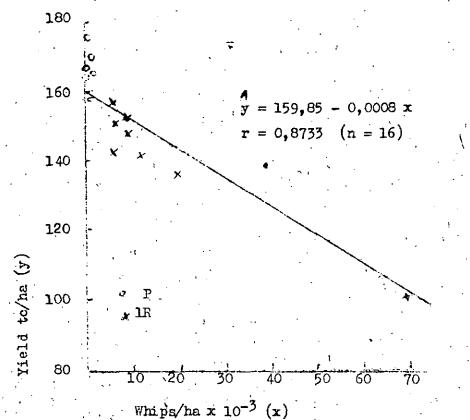
In the first ration crop there was a relatively greater increase in smut incidence in the treated plots, as opposed to the control. However, the trends recorded in the plant crop were still clearly evident, although the effects were less pronounced. Treatment of inoculated seedcane with Bayleton at 0,05% (500 ppm) a.i. reduced smut incidence by 99% in the plant orop, and by 88% in the first ration.

In the plots grown from uninoculated seedcane, which represented normal planting conditions using certified seedcane, the fungicide had the effect of completely eliminating smit in the plant crop even when used at half strength. This effect had disappeared in the first ratoon, however, when similar smut levels were recorded in the treated and the untreated plots.

(b) <u>Cane yields</u>. The main effects on yield are shown in the following table, in which data for the three concentrations of Bayleton have been meaned.

	Yield	l t/ha	TERC/ha		
•	P	1R ·	_ P	1R	
Inoculated seedcane					
Control - no Bayleton Dipped in Bayleton Significance	138,74 163,70 **	101,57 143,86 ***	· 18,26 20,13 *	14,54 20,62 .***	
Uninoculated seedcane					
Control - no Bayleton Dipped in Bayleton Significance	158,30 162,43 N.S.	144,20 153,56 *		,19,51 :21,82 *	
Trial mean	159,43	142,25	19,89	20,17	

Results clearly showed the effect of severe smut infection in reducing cane yields. Dipping inoculated setts in Bayleton increased yields in the plant crop by an average of 25 t/ha, and in the first ration by an average of 42 t/ha, these benefits being entirely due to reduced smut levels.


In the case of cane grown from normal uninoculated setts, the low level of smut infection in the plant crop reduced yields by a small and non-significant amount (4 t/he), bit in the first ration the benefit of Bayleton treatment was reflected by an average increase in yield of 9 t/he from the treated plots. Because smut levels were similar in all treatments in the first ration, it was thus apparent that the effect of smut in the plant crop was carried forward to affect ration yields also.

(c) ERC % same. Heavy smut infection in the plant crop significantly improved ERC % cane, but not to the extent that it compensated for loss in cane yield None of the treatments affected quality in the first ration.

(d) <u>TERC/ha</u>. Due to the lack of ERC % cane effects, TERC/ha responses to treatments followed the same trends as those recorded for cane yields.

The effect of Bayleton treatment on inoculated setts was to increase sugar yields by 1,87 and 6,08 TERC/ha in the plant and first ratoon crops respectively. Responses were smaller in the case of uninoculated setts, with Bayleton treatment improving yields by 0,89 and 2,31 TERC/ha in the two seasons.

(e) Effect of smut on yield. The wide range of smut levels and yields recorded in the plant and first ration crops made it possible to establish an overall relationship between yield (y) and whip counts (x). The correlation between these two factors was significantly linear (r = 0,87) as shown in the following graph :

The average loss in yield caused by smut was 0,8 to/ha per 1 000 whips, or

1,2 tc/ha for every 1 per cent infection.

KEC/Sept. 180.

ø.

3300/43

BAYLETON SETT DLP CONCENTRATIONS

FIRST RATOON DATA, YIELD

				• • •	
Treatments	Yield	ERC %	TERC	Smut wi	nips/ha
TTBE UNEILUS	• t/ha	cane	per ha	Р	lr
Inoculated seedcane Control - no Bayleton Dipped in Bayleton Significence	101,57 143,86 ***	14,36 14,34 N.S.	14,54 20,62 ***	37 821 1 026	68 718 13 269 -
Bayleton @ 125 ppm a.i. " @ 250 ppm a.i. " @ 500 ppm a.i. Significance	136,27 142,53 152,77 *	14,61 14,16 14,25 N.S.	19,89 20,17 21,79 *	1 667 1 090 321	19 038 12 692 8 077
Uninoculated seedcane					
Control - no Bayleton Dipped in Bayleton Significance	144,20 153,56 *	13,61 14,22 N.S.	19,51 21,82 *	1 346 0	6 474 7 26 5 -
Bayleton @ 125 ppm a.i. " @ 250 ppm a.i. " @ 500 ppm a.i. Significance	153,44 148,80 158,43 N.S.	14,31 14,14 14,21 N.S.	21,95 21,02 22,50 N.S.	0 0 (0) -	6 923 8 462 6 410
No Bayleton					
Inoculated Uninoculated Significance	101,57 144,20 ***	14,36 13,61 N.S.	14,54 19,51 ***	.37 821 _1 346	68 718 6 474
Dipped in Bayleton	• • • • •				
Inoculated Uninoculated Significance	143,86 153,56 *	14,34 14,22 N.S.	20,62 21,82 *	1 026 0	13 269 7 265 -
Interaction Trial mean S.E. mean ⁺ C.V. %	* 142,25 6,44 9,05	N.S. 14,20 0,30 4,18	N.S. 20,17 0,88 8,74	5 281 -	17_099

SUUTH AFKICAN SUGAR INDUSTRY AGRONOMISTS' ASSOCIATION

Title:

BAYLETON SETT DIP CONCENTRATIONS 3300/43

TERMINAL REPORT				
Cat No.:	1194			
<u>Object</u> :		s a sett dip for	entration of Bayle the control of a	
Planted :	7th September,	1978		•
Terminated :	17th September	1981, after the	e second ratoon cr	cop.
Harvest dates and	•	Harvest	Age	•
<u>e798</u> :	P 1R 2R	4.9.79 8.9.80 17.9.81	11,9 months 12,1 " 12,3 "	
Location :	ZSA Experiment	Station, Kudu H		
Soil type :	PE.1 sandy cla	y loam derived f	rom gneiss	
Design :	Randomised blo	cks, 4 replicati	ons	
Veriety/spacing :	NCo 376 in 1,5	m rows		
Fertiliser (kg/ha) :		N P2OF	K20	
		20 100 80 100		
•		80 100		· .
Irrigation and	· · ·	Irrig.(mm)	Rain (mm)	
	P	880	707	
	1R 2R	968 880	. 774	· · · · ·
	2 n	000	90 9	
contro cane. been in	l as a cold wate The Bayleton wa noculated with s	r sett dip for t s used to treat	compared with an the control of smu setts which had a ited, the former infection.	it in seed- either
The Ba	vleton concentra	tions tested wer	re as follows :-	
2. Be	ntrol - no Bayle yleton @ 0,0125% yleton @ 0,025% yleton @ 0,050%	(125 npm) a.i.	(* x rec. conc.) (recommended co (2 x rec. conc.)) onc.)
Conduct: (a) Ba	ayleton 25% E.C.	formulation was	used as a cold-w	rater one-

- Bayleton 25% E.C. formulation was us (\mathbf{a}) minute dip.
- Inoculated setts were dipped in a fresh smut spore suspen-sion after treatment with Bayleton. Nett plots were separated by three guard rows of N 52/219 to act as a smut-free barrier between plots. (b)
- (c)

2./ RESULTS.

RESULTS

It was originally intended to measure treatment effects in the plant crop only, but because of large treatment differences the trial was carried through to the second ratoon to study residual effects. Relevant smut records and yield data for all 3 crop cycles are given in the attached tables.

(a) <u>Smut incidence</u>. No smut roguing was undertaken in any of the treatments throughout the course of the trial, with the result that the increase in smut incidence from plant to second ratoon was considerably greater than would normally be experienced.

The most important treatment effects were recorded in the plant crop. In the case of inoculated seedcane severe smut incidence was recorded in the untreated cane and the overall effect of Bayleton was to reduce smut levels by 97%. Even the lowest concentration of Bayleton had a marked effect in controlling smut development, and increasing concentrations had a linear effect in reducing smut incidence.

In the plots grown from uninoculated seedcane, which represented normal planting conditions using certified seed, the fungicide had the effect of completely eliminating smut even at the lowest concentration.

High smut incidence levels were recorded in the ratoons. In spite of this, however, the effects of Bayleton in reducing smut incidence in cane grown from inoculated seedcane were evident through to the second ratoon, although treatment differences were less pronounced. Treatment effects on uninoculated seedcane were recorded in the plant crop only, and no residual effects were evident in the ratoons.

(b) <u>Yield effects</u>. Plant crop results clearly showed the effect of smut infection in reducing cane yields, and also showed the benefit derived from dipping in Bayleton, which increased yields by 25 t/ha (18%) in the case of the inoculated treatments. This effect was even more pronounced in the ratoons, with yield gains of 42% and 21% being recorded in the first and second ratoons respectively. Although the three Bayleton concentrations did not cause meaningful yield effects in the plant crop, in both the ratoons there were significant linear increases in yield associated with increasing concentrations.

In the uninoculated treatments Bayleton did not cause a significant yield gain in the plant crop, but it did in both ratoons with an average increase of \pm 7,5 t/ha. There was no yield response to increasing concentrations of Bayleton.

There were no cane quality responses so the effects of treatments on TERC/ha followed the same trends as for cane yields. The average effect of Bayleton treatment on inoculated setts was to increase ERC yields by 3,68 t/ha, and by 1,16 t/ha in the case of the uninoculated treatments.

The direct effect of severe smut incidence was an average loss of 3,22 t/ha ERC. The use of Bayleton to control smut reduced this loss to 0,70 t/ha.

3./ (c)

3300/43 (Term)

(c) <u>Stalk counts</u>. Millable stalk counts recorded at the three harvests were as follows :-

	Stalks/ha x 10-3						
Treatments	Р	1R	2R	Means			
Inoculated seedcane		i					
Control - no Bayleton Dipped in Bayleton	174,3 165,1	124,8 150,6	125,5 146,8	141,5 154 ,2			
Uninoculated seedcane				1			
Control - no Bayleton Dipped in Bayleton	156,6 162,4	150,4 157,0	150,4 158,6	152,5 159,3			

Plant crop data showed that high smut levels in the inoculated control treatment caused an increase in stalk population, followed by a pronounced decrease in the rateons as would be expected.

Bayleton treatment of uninoculated seedcane caused a small but consistant increase in stalk counts. It was apparent that the effects of smut on yield were primarily due to reduced millable stalk populations.

CONCLUSIONS

The inoculation treatments were included to simulate conditions of severe soil infection, and plant crop results showed that a short-duration cold-water Bayleton dip was successful in reducing smut incidence under such conditions, even at low fungicide concentrations.

Results showed that smut suppression by Bayleton was of short duration and that disease incidence increased rapidly in the rations, although evidence of treatment residual effects were maintained until the second ration.

Yield data clearly showed the benefits of using Bayleton for smut control, with untreated controls giving considerably reduced yields through to the second ratoon, largely because of reduced millable stalk populations.

KEC/Oct. '81. rw . 3-

3300/43 BAYLETON SETT DIP CONCENTRATIONS

SMUT RECORDS - PLANT TO SECOND RATOON

Treatment effects	Smut whips per ha					
TIER UMENTO ETTECTS	Р	1R	2R			
Inoculated Seedcane						
Control - no Bayleton Dipped in Bayleton	75 641 2 051	196 667 28 932	172 179 59 0 17			
Bayleton @ 125 ppm a.i. " @ 250 ppm a.i. " @ 500 ppm a.i.	3 333 2 179 641	41 410 28 077 17 308	74 103 52 564 50 385			
Uninoculated Seedcane						
Control - no Bayleton Dipped in Bayleton	2 692 812	14 487 15 128	37 692 45 299			
Bayleton @ 125 ppm a.i. " @ 250 ppm a.i. " @ 500 ppm a.i.	0 0 (0)	14 744 17 179 13 462	38 846 53 462 43 590			
No Bayleton						
Inoculated Uninoculated	75 641 2 692	196 66 7 14 487	172 179 37 692			
Dipped in Bayleton						
Inoculated Uninoculated	2 051 812	28 932 15 128	59 017 45 299			
Trial mean	10 865	42 9 17	65 353			

BAYLETON SETT DIP CONCENTRATI 3300/43

TIELD DATA - PLANT TO SECOND RATOON

		CANE YIE	ELD t/ha	ERC % CANE			TERC/ha					
Treatments	Р	1R	2R	Means	P	1R	2 R	Means	P	1R	2R	Means
Inoculated seedcane												-
Control - no Bayleton Dipped in Bayleton Significance Bayleton @ 125 ppm a.i.	138,74 163,70 ** 170,00	101,57 143,86 *** 136,27	104,87 126,78 ** 117,67	115,06 144,78 141,31	13,08 12,30 N.S. 12,31	14, 36 14, 34 N.S. 14, 61	13,95 13,99 N.S. 14,12	13,80 13,54 13,68	18,26 20,13 * 20.90	14,54 20,62 *** 19,89	14,62 17,72 ** 16,61	15,81 19,49 19,13
" @ 250 ppm a.i. " @ 500 ppm a.i. Significance	145,20 175,90 *	142,53 152,77 *	126,30 136,37 *	1 38, 01 155,01 -	12,16 12,43 N.S.	14.16 14,25 N.S.	13.59 14,26 N.S.	13,30 13,65 -	17,61 21,88 N.S.	20,17 21,79 *	17, 15 19, 41 **	18, 31 21,03
Uninoculated seedcane Control - no Bayleton Dipped in Bayleton Significance Bayleton @ 125 ppm a.i. " @ 250 ppm a.i. " @ 500 ppm a.i. Significance <u>No Bayleton</u> Inoculated Significance	158,30 162,43 N.S. 165,77 153,94 167,57 N.S. 138,74 158,30 **	144,20 153,56 * 153,44 148;80 158,43 N.S. 101,57 144,20 ***	126,56 -136,09 * 140,47 136,87 130,93 N.S. 104,87 126,56 ***	143,02 150,69 153,23 146,54 152,31 - 115,06 143,02	12,30 12,50 N.S. 12,50 12,50 12,51 N.S. 13,08 12,30 N.S.	13,61 14,22 N.S. 14,31 14,14 14,21 N.S. 14,36 13,61 N.S.	14, 30 13, 51 N.S. 13, 62 13, 57 13, 34 N.S. 13, 95 14, 30 N.S.	13,40 13,41 13,48 13,40 13,35 13,80 13,80	19,46 20,35 N.S. 20,76 19,32 20,96 N.S. 18,26 19,46 N.S.	19,51 21,82 * 21,95 21,02 22,50 N.S. 14,54 19,51 ***	18,11 18,39 N.S. 19,11 18,60 17,46 N.S. 14,62 18,11 **	19,03 20,19 20,61 19,65 20,31 15,81 19,03
<u>Dipped in Bayleton</u> Inoculated Uninoculated Significance	163,70 162,43 N.S.	143,86 153,56 *	126,78 136.09 *	144,78 150,69 -	12,30 12,50 N.S.	14,34 14,22 N.S.	13,99 13,51 N.S.	13,54 13,41 -	20,13 20,35 N.S.	20,62 21,82 *	17.72 18.39 N.S.	19,49 20,19
Interaction Trial mean S.E. mean ± C.V.%	N.S. 159,43 7,61 9,55	* 142,25 6,44 9,05	* 127,50 5,04 7,91	- 143,06 -	N.S. 12,47 0,30 4,74	N.S. 14,20 0,30 4,18	* 13,84 0,20 2,93	13,50 -	N.S. 19,89 1,14 11,49	N.S. 20,17 0,88 8,74	* 17,63 0,70 7,93	19,23

Title:

.

٠

÷ ,

BAYLETON SETT DIP CONCENTRATIONS 3300/43

-

ار ب

TERMINAL REPORT					
Cat No.:	1194				
<u>Object</u> :	(triadime	mine the optimum fon) as a sett d ed seedcane.			
Planted :	7th Sept	ember, 1978			
<u>Terminated</u> :	17th Sep	tember 1981, aft	er the sec	ond ratoon c	rop.
Harvest dates and		Harvest		Age	
6568 I	Р	4.9.79	•	9 months	
	1R	8.9.80			
	2R.	17.9.81	12,	3 "	
Location :	ZSA Expe	riment Station,	Kudu Block	H 14-15	
Soil type :	PE.1 san	dy clay loam der	ived from	gneiss	
Design :	Randomis	ed blocks, 4 rep	lications		
Variety/spacing :	NCo 376	in 1,5m rows			
Fertiliser (kg/ha)		N	P205	K20	
	P	120	100	60	
	1R 2R	180 180	100 100	60 60	
	21	100		00	
Irrigation and		Irrig. (m	m)	<u>Rain</u> (mm)	
	P	880		707	
	1R	968		774	
	2R	880		909	
cont cane beer	rol as a col . The Bayle inoculated	ions of Bayleton d water sott dip ton was used to with smut or uni c simulate sever	for the c treat sett noculated,	ontrol of sm s which had the former	ut in seed- either
The	Bayleton con	centrations test	ed were as	follows :-	
1.	Control - no	Bayleton			
2.	Bayleton @ O	,0125% (125 ppm) ,025% (250 ppm)	a.i. (*	x rec. conc.)
4.	Bayleton @ 0 Bayleton @ 0	,029% (290 ppm) ,050% (500 ppm)	a.1. (2)	x rec. conc	onc.)
			·		
$\underline{Conduct}: (a)$	Bayleton 259 minute dip.	% E.C. formulati	on was used	i as a cold-	rater one-
(b)		setts were dippe		sh smut spore	e suspen-
(c)	Nett plots	treatment with B were separated b; smut-free barri	y three gu		N 52/ 219
				2./ <u>RE</u>	SULTS

.

RESULTS

It was originally intended to measure treatment effects in the plant crop only, but because of large treatment differences the trial was carried through to the second ration to study residual effects. Relevant smut records and yield data for all 3 crop cycles are given in the attached tables.

(a) <u>Smut incidence</u>. No smut roguing was undertaken in any of the treatments throughout the course of the trial, with the result that the increase in smut incidence from plant to second ratoon was considerably greater than would normally be experienced.

The most important treatment effects were recorded in the plant crop. In the case of inoculated seedcane severe smut incidence was recorded in the untreated cane and the overall effect of Bayleton was to reduce smut levels by 97%. Even the lowest concentration of Bayleton had a marked effect in controlling smut development, and increasing concentrations had a linear effect in reducing smut incidence.

In the plots grown from uninoculated seedcane, which represented normal planting conditions using certified seed, the fungicide had the effect of completely eliminating smut even at the lowest concentration.

High smut incidence levels were recorded in the ratoons. In spite of this, however, the effects of Bayleton in reducing smut incidence in cane grown from inoculated seedcane were evident through to the second ratoon, although treatment differences were less pronounced. Treatment effects on uninoculated seedcane were recorded in the plant crop only, and no residual effects were evident in the ratoons.

(b) <u>Yield effects</u>. Plant crop results clearly showed the effect of smut infection in reducing cane yields, and also showed the benefit derived from dipping in Bayleton, which increased yields by 25 t/ha (18%) in the case of the inoculated treatments. This effect was even more pronounced in the ratoons, with yield gains of 42% and 21% being recorded in the first and second ratoons respectively. Although the three Bayleton concentrations did not cause meaningful yield effects in the plant crop, in both the ratoons there were significant linear increases in yield associated with increasing concentrations.

In the uninoculated treatments Bayleton did not cause a significant yield gain in the plant crop, but it did in both ratoons with an average increase of \pm 7,5 t/ha. There was no yield response to increasing concentrations of Bayleton.

There were no cane quality responses so the effects of treatments on TERC/ha followed the same trends as for cane yields. The average effect of Bayleton treatment on inoculated setts was to increase ERC yields by 3,68 t/ha, and by 1,16 t/ha in the case of the uninoculated treatments.

The direct effect of severe smut incidence was an average loss of 3,22 t/ha ERC. The use of Bayleton to control smut reduced this loss to 0,70 t/ha.

3./ (c)

3300/43 (Term)

(c) <u>Stalk counts</u>. Millable stalk counts recorded at the three harvests were as follows :-

	Stalks/ha x 10-3						
Treatments	Р	1R	2R	Means			
Inoculated seedcane		1					
Control - no Bayleton Dipped in Bayleton	174,3 165,1	124,8 150,6	125,5 146,8	141,5 154,2			
Uninoculated seedcane							
Control - no Bayleton Dipped in Bayleton	156,6 162,4	150,4 157,0	150,4 158,6	152,5 159,3			

Plant crop data showed that high smut levels in the inoculated control treatment caused an increase in stalk population, followed by a pronounced decrease in the rateons as would be expected.

Bayleton treatment of uninoculated seedcane caused a small but consistant increase in stalk counts. It was apparent that the effects of smut on yield were primarily due to reduced millable stalk populations.

CONCLUSIONS

The inoculation treatments were included to simulate conditions of severe soil infection, and plant crop results showed that a short-duration cold-water Bayleton dip was successful in reducing smut incidence under such conditions, even at low fungicide concentrations.

Results showed that smut suppression by Bayleton was of short duration and that disease incidence increased rapidly in the rateons, although evidence of treatment residual effects were maintained until the second rateon.

Yield data clearly showed the benefits of using Bayleton for smut control, with untreated controls giving considerably reduced yields through to the second ratoon, largely because of reduced millable stalk populations.

KEC/Oct. '81. IW

3300/43 BAYLETON SETT DIP CONCENTRATIONS

SMUT RECORDS - PLANT TO SECOND RATOON

٠

Treatment effects	Smut whips per ha						
Treatment effects	Р	1R	2R				
Inoculated Seedcane							
Control - no Bayleton Dipped in Bayleton	75 641 2 051	196 667 28 932	172 179 59 0 17				
Bayleton @ 125 ppm a.i. " @ 250 ppm a.i. " @ 500 ppm a.i.	3 333 2 179 641	41 410 28 077 17 308	74 103 52 564 50 385				
Uninoculated Seedcane							
Control - no Bayleton Dipped in Bayleton	2 692 812	14 487 15 128	37 692 45 299				
Bayleton @ 125 ppm a.i. " @ 250 ppm a.i. " @ 500 ppm a.i.	0 0 (0)	14 744 17 179 13 462	38 846 53 462 43 590				
No Bayleton							
Inoculated Uninoculated	75 641 2 692	196 667 14 487	172 179 37 692				
Dipped in Bayleton							
Inoculated Uninoculated	2 051 812	28 932 15 128	59 017 45 299				
Trial mean	10 865	42 9 17	65 353				

3300/43 BAYLETON SETT DIP CONCENTRATIONS

YIELD DATA - PLANT TO SECOND RATOON

Treatments	CANE YIELD t/ba			ERC % CANE			TERC/ha					
	. P	1R	2R	Means	P	1R	2R	Means	P	1R	2R	Means
Inoculated seedcane	,											
Control - no Bayleton Dipped in Bayleton Significance Bayleton @ 125 ppm a.i. " @ 250 ppm a.i. " @ 500 ppm a.i. Significance	138,74 163,70 ** 170,00 145,20 175,90	101,57 143,86 *** 136,27 142,53 152,77 *	104,87 126,78 ** 117,67 126,30 136,37 *	115,06 144,78 - 141,31 138,01 155,01	13,08 12,30 N.S. 12,31 12,16 12,43 N.S.	14,36 14,34 N.S. 14,61 14,16 14,25 N.S.	13,95 13,99 N.S. 14,12 13.59 14,26 N.S.	13,80 13,54 13,68 13,30 13,65 	18,26 20,13 * 20.90 17,61 21,88 N.S.	14,54 20,62 *** 19,89 20,17 21,79 *	14,62 17,72 ** 16,61 17,15 19,41 **	15,81 19,49 19,13 18,31 21,03
Uninoculated seedcane							_	· · ·	r -	•		
Control - no Bayleton Dipped in Bayleton Significance Bayleton @ 125 ppm a.i. " @ 250 ppm a.i. " @ 500 ppm a.i. Significance	158,30 162,43 N.S. 165,77 153,94 167,57 N.S.	144,20 153,56 * 153,44 148;80 158,43 N.S.	126,56 136,09 * 140,47 136,87 130,93 N.S.	143,02 150,69 	12,30 12,50 N.S. 12,50 12,50 12,51 N.S.	13,61 14,22 N.S. 14,31 14,14 14,21 N.S.	14,30 13,51 N.S. 13,62 13,57 13,34 N.S.	13,40 13,41 13,48 13,40 13,35	19,46 20,35 N.S. 20,76 19,32 20,96 N.S.	19,51 21,82 * 21,95 21,02 22,50 N.S.	18,11 18,39 N.S. 19,11 18,60 17,46 N.S.	19,03 20,19 20,61 19,65 20,31
<u>No Bayleton</u>	H											
Inoculated Uninoculated Significance	138,74 158,30 **	101,57 144,20 ***	104,87 126,56 ***	115,06 143,02 -	13,08 12,30 N.S.	14,36 13,61 N.S.	13,95 14,30 N.S.	13,80 13,40 -	18,26 19,46 N.S.	14,54 19,51 ***	14,62 18,11 **	15,81 19,03
Dipped in Bayleton	li A									1		
Inoculated Uninoculated Significance	163,70 162,43 N.S.	143,86 153,56 *	126,78 136.09 *	144,78 150,69 -	12,30 12,50 N.S.	14,34 14,22 N.S.	13,99 13,51 N.S.	13,54 13,41 -	20,13 20,35 N.S.	20,62 21,82 *	17,72 18,39 N.S.	19,49 20,19
Interaction Trial mean S.E. mean ± C.V.%	N.S. 159,43 7,61 9,55	* 142,25 6,44 9,05	* 127,50 5,04 7,91	143,06	N.S. 12,47 0,30 4,74	N.S. 14,20 0,30 4,18	* 13,84 0,20 2,93	13,50	N.S. 19,89 1,14 11,49	N.S. 20,17 0,68 8,74	* 17,63 0,70 7,93	19,23

y -