SOUTH AFRICAN SUGAR INDUSTRY

AGRONOMISTS' ASSOCIATION

<u>Code</u>: R8 ETv1/87 Cat No: 1628

TITLE : Fusilade Super rates on N14 - late season.

1. PARTICULARS OF THE CROP

This crop	:	Ratoon	Spray method : CP3 knapsack &
<u>Site</u>	:	Mhlati TSB	overhead boom fitted with
Region	:	Northern irrigated	2 x TK 1,0 floodjets
<u>Soil system</u>	:	Komatipoort	Pressure : 150 kPa
<u>Soil form</u>	:	Shortlands	<u>Volume/ha</u> : 492 ha ⁻¹
<u>Design</u>	:	Randomised block	Weather at spray :Warm & clear
<u>Plot size</u>	:	4 rows x 9m x 1,5m	Condition of cane at spray :
<u>Varieties</u>	:	N14	Purity % = 88, 9 to 10 green leaves
<u>Date & age</u>			Sampling technique : See sam-
at spraying	:	9,5 months	pling procedure
Sampling dates	:	6 Oct; 26 Nov; 4 Dec;	· · · · ·
		ll Dec.	
Irrigation	:	42mm on 6 day cycle	
Rainfall	:	570mm	

2. OBJECTIVES

- 1. To continue assessing the response of N14 to Fusilade Super.
- To determine the optimum time between spraying and harvesting during summer months (October to December).
- 3. To assess the residual effects of Fusilade Super on the following crop.

3. TREATMENTS

- 1. Control (no ripener)
- 2. Fusilade Super at 300m/ha⁻¹
- 3. Fusilade Super at 400mlha⁻¹
- 4. Fusilade Super at $600 \text{ m}/\text{ha}^{-1}$

4. SAMPLING PROCEDURE

3 stalks from each plot were taken randomly and composited for each treatment on the day of spraying (5 October) - the uppermost leaf with a visible dewlap (TVD) were marked with paint. The sheath attachment of these leaves were within a few centimetres below the apical meristem.

Seven weeks after spraying 4 stalks were taken from 4 predetermined points in the net rows of each plot in reps 1 to 5. The stalks were topped by hand at the natural breaking point. Ten stalks with marked TVD's (at spraying) were taken from each plot in rep 6. Various measurements were recorded before topping stalks by hand at the NBP. The stalks were then sectioned into 3 equal lengths which were analysed separately.

Eight weeks after spraying (4 December) eight stalks with marked TVD were taken from Control and Fusilade Super 400mlha⁻¹ plots in reps 1 to 4. Each internode above and also below the point at which the marked leaf was attached to the stalk were marked, sectioned and analysed separately.

Nine weeks after spraying samples were taken from all the reps in the same way as were taken from rep 1 to 5 seven weeks after spraying. 5. RESULTS FROM SAMPLING

•

.

				<u>,</u>	· · · · · · · · · · · · · · · · · · ·		
Dates + wks		POL & CANE	• .	STALK MASS (G/STALK)			
after	6/10	26/11	11/12	6/10	26/11	11/12	
Treatments	0	7	9	. 0	7	9	
Control	13,6	13,5	13,6	1139	1181	1276	
Fus S 300ml	13,9	14,5*	15,7**	1139	1200	1172	
Fus S 400m <i>e</i>	12,9	15,9**	15,8**	1069	1163	1135*	
Fus 8 600m <i>l</i>	13,3	16,2**	15,9**	1069	1169	1099**	
MEAN	13,4	15.0	15,2	1104	1178	, 1171	
C.V.8		4,6	7,1		8,2	8,7	
S.E_D.		0,43	0,62		61,0	59,1	
LSD(P=0,05)*		0,94	1,3		133 .	126	
LSD(P=0,01)**		1,3	1,8		186	174	
Dates + wks		POL G/STALK	-		PURITY %	₫	
Ireat- after ment spray	0	7	9	0	7	9	
Control	154,9	159,7	172,9	87,8	87,3	86,8	
Fus S 300ml	158,3	174,2	184,0	90,0	87,5	91,0*	
Fus S 400ml	137,9	185,1*	178,6	87,2 90,6*		90,5*	
Fus S 600ml	142,2	189,4*	.176,0	87,7	90,9*	90,6*	
MEAN	147,9	177,1	177,9	88,2	89,1	89,8	
C.V		9,9	11		1,5	2,3	
S.E.D.		11,1	11,3		0,85	1,2	
LSD(P=0,05)*		24,3	24,1		1,8	2,55	
LSD(P=0,01)**		34,0	33,3		2,6	3,5	

۰.

ż

7

6. DATA FROM SECTIONED STALKS

1

		ers % c		<u>g/</u>	g/stalk		ers g/stalk		Purity %	
	•	Segment	Cumulati	ve Seg	Cum	Seg	Cum	Seg	Cum	
Control	bottom	13,1	13,1	473	473	61,7	61,7	-84,5	84,5	
	middle	13,3	13,2	479	952	63,6	125,3	85,5	85,0	
	top	3,7	10,1	444	1396	16,2	141,5	56,7	78,2	
us.S 300	bottom	12,7	12,7	393	393	50,0	50,0	82,7	82,7	
	middle	13,1	12,9	372	765	48,8	98,8	84,0	83,3	
	top	10,1	12,0	376	1141	37,9	136,8	77,7	81, 6	
us S 400	bottom	13,0	13,0	389	389	50,7	50,7	84,0	84,0	
	midðle	12,8	12,9	385	774	49,3	100,1	82,9	83,5 🔵	
	top	7,6	11,2	387	1161	29,5	129,5	69,6	79,4	
us S 600	bottom	12,9	12,9	348	348	45,0	45,0	82,9	82,9	
	middle	13,1	13,0	355	703	46,4	91,4	83,3	83,1	
	top	10,6	12,2	337	1040	35,9	127,3	79,4	82,0	

6.1. 7 weeks after spraying (sectioned by lengths)

ĩ

6.1.1. Stalk measurements 7 weeks after spraying

	CONTROL		SUPER	
Lengths to:		<u>300m/</u>	<u>400ml</u>	<u>600m@</u>
Apical meristem				
on 5/10	<u>193</u>	193	193	193
Apical meristem			•	
on 25/11(7 weeks)	218	;		
NBP on 25/11	207	202	187	181
Mass g/stalk				
after topping	1396	1141	1161	1040
• <u>.</u>				

-

.

.

6.2. <u>8 weeks after spraying (sectioned by internodes)</u>

		ers % c	g/stalk		ers g/stalk		purity	
Internode		Seg <u>Cum</u>	Seg	Cum	Seg	Cum	Seg	Cum
Rest	Control	14,6 14,5	821 ·	821 874	119,4	119,4 138,3	93,2 93,8	93,2 93,8
(9-12)	F 3 400				10075			
8	Control	12,8 14,4	50	871	6,5	125,9	91,0	93,1
	F S 400	14,9 15,8	54	928	8,1	146,4	92,1	93,7
7	Control	12,6 14,4	42	913	5,2	131,1	89,8	93,0
	F S 400	14,6 15,7	40	968	5,8	152,2	91,2	93,6
	Control	11,7 14,2	43	956	5,0	136,1	88,5	92,8
	F S 400	13,8 15,6	44	1012	6,0	158,2	90,6	93,5
E	Control	10,4 14,1	48	1004	5,0	141,2	84,3	92,4
5	F S 400	13,0 15,5	- 52	1063	6,7	.165,0	88,9	93,3
	Control	8,5 13,8	52	1056	4,4	145,6	78,9	91,9
-	F S 400	11,9 15,3	55	1119	6,6	171,6	86,4	93,0
2	Control	6,2 13,4	51	1107	3,1	148,7	70,6	91,2
	FS 400	9,7 15,1	55	1174	5,3	176,9	80,8	92,6
2	Control	2,4 13,0	42	1149	1,0	149,7	53,9	90,4
Z	F S 400	No data	27	1201		No	data	
	Control	-0,7 12,6	40	1189	-0,3	149,5	34,5	90,1
T	F S 400	No data	7	1208		No	data —	
	Control	-1,95 12,0	49	1238	-1,0	148,5	16,8	88,9
A	F S 400			-No dat	a			
В	C <mark>ontr</mark> ol F S 400	-2,7 11,5	42	1280 -No dat	-1,1	147,4	11,6	88,0
	· · ·	<u></u>					_	

COMMENTS

- * The similar responses to Fusilade Super applied at 400mLha⁻¹ an 600mLha⁻¹ in terms of cane quality were significantly (P=0,01) greater than that from 300mLha⁻¹ seven weeks after spraying. Nine weeks after spraying the highly significant (P=0,01) responses to Fusilade Super were no different for the three rates applied.
- The effects of Fusilade Super on stalk mass at the three applied rates were negligible seven weeks after spraying. Sucrose yields (Pol g/stalk) were only significant (P=0,05) for the two higher rates.
- Nine weeks after spraying stalk mass of treated cane was substantially less than that of untreated cane. The improvement in cane quality was negated by the reduced stalk mass and sucrose yields of treated cane was little different from that of untreated cane. The effect of 300ml and 600ml ha⁻¹ on stalk mass nine weeks after spraying was significantly (P=0,05) different.
- Sectioning data seven weeks after spraying indicates that the quality of only the upper 1/3rd of the stalk is affected by Fusilade Super while that from 8 weeks after spraying suggest that cane quality of the upper half of the stalk is improved by Fusilade Super.

RAD/lp 15/7/88