SOUTH AFRICAN SUGAR INDUSTRY

AGRONOMISTS' ASSOCIATION

EXPERIMENT RESULT

<u>CODE:</u> K13/90/SW/UBO 'K' CAT.NO.: 1831

TITLE: LEVELS OF POTASSIUM APPLICATION FOR LATE SEASON CANE ON A 'K' SET SOIL

1. PARTICULARS OF PROJECT

This crop	:	2nd ratoon	Soil Analysis: 06.11.90
Site	:	Ubombo Ranches Field Block 1	<u>pH</u> <u>OM% Clay% Silt% Sand%</u> 7.4 3.03 59.5 11.5 20.6
Region	:	Northern Irrigated (Swaziland)	ppm <u>P Ko Cao Mgo (Ca+Mg)/K</u>
Design	:	Randomised block 6 replications	65 261 6027 1968 31 CEC : 53.5 meq/100g soil
Soil Set/Serie	s:	'K' Kwezi	ND1 . 0.54
Variety	:	N19	Date : 23.10.90-11.10.91 Age : 11.75 months
Fertilizer Total (Kg/ha)	:	<u>N P K</u> 160 40 See treatment	Rainfall : 287 mm <u>Irrigation</u> : 855 mm Total : 1142 mm

2. <u>OBJECTIVES</u>

- 2.1 To test the new FAS soil-K threshold for heavy clay soils when growing cane on a summer cycle.
- 2.2 To monitor leaf-K content during summer in relation to soil-K levels.

3. TREATMENTS

3.1 Potassium

Potassium as KCl (50% K) was surface broadcast on 06.11.90, 2 weeks after harvest.

3.2 Notes on Treatments

Nitrogen as Urea (46% N) at the rate of 140 kg N ha⁻¹ and MAP (11% N) at the rate of 20 kg N ha⁻¹ was topdressed on the cane row on 06.11.90, 2 weeks after harvest.

Phosphorous as MAP (22% P) at the rate of 40 kg P ha⁻¹ was surface broadcast on 06.11.90, 2 weeks after harvest .

3.4 Notes on soil sampling

<u>Topsoil</u>	:	40 cores were taken in each plot at a ratio of 16 on row to 24 interow (i.e. 1:1,5).
<u>Subsoil</u>	:	20 cores were taken from 3 selected plots in each of the control and the 350 kg K ha ⁻¹ treatment at a ratio of 8 on row to 12 interow $(1:1,5)$.

4. <u>RESULTS</u>

4.1 <u>Soil Analysis</u>

Table 1: Properties of the soil profile - November 1990

Depth (cm)	Clay%	OM%	CEC meq/100g soil	TCEC meq/100g clay	KDI
0-15	59.5 (0.3)	3.0 (0.2)	53.50 (0.48)	89.9	0.54 (0.007)
20-30	62.3 (1.8)	2.6 (0.03)	58.29 (2.37)	93.6	0.64 (0.047)
40-50	61.7 (0.5)	2.2 (0.10)	64.06 (2.16)	103.8	0.66 (0.024)

() Standard error

Note: Samples taken from 3 control plots.

Table 2: #	. Ca	and Mo	status	(pom)	of	the soil	profile -	November	1990
------------	------	--------	--------	-------	----	----------	-----------	----------	------

Depth (cm)	K	Control Ca	· Mg -	(Ca + Mg)/K	ĸ	350 kg K ha ⁻¹ Ca	Mg	(Ca+Mg)/K
0-15 20-30	283 (40) 209 (23)	6057 (505) 7527 (433)	1925 (45) 2008 (121)	28 46	232 (27) 230 (27)	6000 (535) 7770 (251)	2033 (64) 1984 (50)	35 42
40-50	174 (20)	8213 (775)	2095 (118)	59	232 (13)	8373 (615)	2049 (17)	45

() Standard error

Note: Samples taken before fertilization from 3 plots in each of the control and 350 kg K ha⁻¹ treatments.

Table 3: K, Ca and Mg status (ppm) of the topsoil - October 1991

Treatment	K	Са	Mg	(Ca+Mg)/K
Ko Control	273	6953	1897	32
K1 175 kg K ha ⁻¹	311	6553	1922	27
K2 350 kg K ha ⁻¹	348	7100	1837	26
LSD (0.05)	79	935	197	
(0.01)	112	1329	280	
Significance	NS	NS	NS	
Mean	311	6869	1886	
SE one plot	61	727	153	
CVX	19.7	10.6	8.1	

4.2 <u>Harvest Data</u>

No harvest data was available as this trial was cut in error by the Estate.

4.3 Leaf Analysis

Table 4: Third leaf analysis (% dm) at 3.5 months of age in February

Treatments	N	Р	K	Ca	Mg
Ko Control	1.66 ^D	0.27	1.31	0.34	0.16
K1 175 kg K ha ⁻¹	1.67 ^D	0.27	1.37	0.29	0.15
K2 350 kg K ha ⁻¹	1.67 ^D	0.27	1.42	0.34	0.15
LSD (0.05)	0.070	0.007	0.13	0.070	0.012
(0.01)	0.10	0.018	0.18	0.10	0.017
Significance	NS	NS	NS	NS	NS
Mean	1.67	0.27	1.37	0.33	0.15
SE one plot	0.050	0.011	0.101	0.056	0.016
CV%	3.0	4.0	7.4	17.1	10.7

D Deficient

Table 5: Third leaf analysis (% dm) at 4.75 months of age in March

Treatments	N	Р	K°	Ca	Mg
Ko Control	1.63	0.22	1.22	0.24	0.14
K1 175 kg K ha ⁻¹	1.62	0.22	1.23	0.25	0.16
K2 350 kg K ha ⁻¹	1.62	0.22	1.35	0.24	0.13
LSD (0.05)	0.041	0.006	0.11	0.030	0.014
(0.01)	0.058	0.009	0.16	0.050	0.019
Significance	NS	NS	*	NS	NS
Mean	1.62	0.22	1.27	0.24	0.14
SE one plot	0.024	0.008	0.088	0.018	0.017
CV%	1.5	3.6	7.0	7.5	12.2

5. <u>COMMENTS</u>

5.1 Soil Analysis

Soil-K status of the control was above the new FAS threshold for soils containing more than 40% clay, but the (Ca + Mg)/K ratio was high, indicating that the availability of K might be limited by the high content of Ca + Mg.

K treatments tended to increase soil-K content but the differences between the control and additional K rates were not significant.

Sampling at depth showed that there tended to be no difference in K content between the topsoil and the subsoil (Table 2). It was noted, however, that the TCEC values increased with depth, indicating that the mineralogical composition of the clay fraction changed. This means that the subsoil could contain a higher proportion of K bearing minerals than the topsoil and therefore the lack of difference in K content cannot necessarily be attributed to leaching of K.

If K moves downwards it is more likely to be because of the self mulching property of this swelling clay soil than through leaching.

It was of interest to note that while K remained more or less constant, the Ca and Mg content increased with depth. This resulted in an increase in the (Ca + Mg)/K ratio, indicating decreasing availability of K with depth.

5.2 Leaf Analysis

Leaf analysis at 3.5 and 4.75 months showed K content of the control to be well above threshold, thus confirming that the soil-K status was adequate. The K treatments were reflected in the leaf-K content and in March the response was significant.

The leaf content of the other nutrients was also found to be above threshold except for N which appeared to be suboptimal in February.

6. CONCLUSIONS

- * Harvest data were not available for this trial and only leaf-K analysis could be used as an index of cane response.
- * Leaf-K content in the control was found to be above threshold, confirming that the soil-K status of this soil was adequate and response to K would have been unlikely.
- * Sampling at depth showed the subsoil to contain substantial reserves of K. Although mineralogical differences between subsoil and topsoil might account for the subsoil K reserves, the self mulching property of swelling clay soils is also likely to provide a means to replenish the root zone by a process of natural incorporation of surface applied fertilizer.

* This trial has been continued and is now in its 3rd ratoon.

PCH/vnm 16.03.92

SOUTH AFRICAN SUGAR INDUSTRY AGRONOMISTS' ASSOCIATION

EXPERIMENT RESULT

<u>CODE</u>: K13/90/Sw/Ubo K CAT No: 1831

TITLE: LEVELS OF POTASSIUM APPLICATION FOR LATE SEASON CANE ON A 'K' SET SOIL

1. PARTICULARS OF PROJECT

F

This crop	:	3rd ratoon	Soil Analys	is: 23/10/91 (*May 1991)
Site	:	Ubombo Ranches Field Block 1	<u>pH</u> <u>OM%</u> 6.9 2.6	<u>Clav% Silt% Sand%</u> 62.0 12.6 24.0
Region	:	Northern Irrigated (Swaziland)	P Ko 81 257	<u>Cao Mgo (Ca+Mg)/K</u> 6953 1897 34
Design	:	Randomized blocks 6 replications	CEC : KDI :	55.3 meq/100g soil* 0.67*
Soil Set/Serie	s:	´K´ Kwezi	Date :	11/10/91-28/08/92
Variety	:	N19	D-1-f-11	
Fertilizer Total (kg/ha)	.:	N P K 160 - See Treatment	Irrigation: Total	1286 mm 1599 mm

2. OBJECTIVES

- 2.1 To test the new FAS soil-K threshold for heavy clay soils when growing cane on a summer cycle.
- 2.2 To monitor leaf-K content during summer in relation to soil-K levels.

3. TREATMENTS

3.1 Potassium

 K_{0} K_{1} K_{2} 0 175 350 kg K ha⁻¹

Potassium as KCl (50 % K) was surface broadcast and lightly incorporated with a springtine cultivator on 24/10/91, two weeks after harvest.

3.2 Notes on Treatments

Nitrogen as Urea (46 % N) at the rate of 160 kg N ha⁻¹, subdivided into two equal amounts of 80 kg N h⁻¹ was topdressed on the cane row at 2 weeks and 2.7 months after harvest respectively.

3.3 Notes on Soil Sampling

<u>Topsoil</u>: 40 cores were taken in each plot at a ratio of 16 in row to 24 interow (ie. 1:1.5).

÷,

4. **RESULTS**

4.1 Soil Analysis

Table 1:K. Ca and Mg Status (ppm) of the Topsoil before and afterFertilization in October 1991 and May 1992 Respectively

Trantmont		Octol	ber 199	1	May 1992			
Irea chient	K	Ca	Mg	(Ca+Mg)/K	K	Ca	Mg	(Ca+Mg)/K
Ko Control K ₁ 175 kg K ha ⁻¹ K ₂ 350 kg K ha ⁻¹	274 311 348	6953 6553 7100	1897 1923 1838	34 28 26	211 243 303	7530 7128 7248	1800 1871 1733	46 38 31
LSD (0.05)	79	934	197	9	37	634	261	6
Significance	NS	NS	NS	NS	**	NS	NS	**
Mean S.E.D. CV %	311 35.4 10.7	6869 419.4 10.6	1886 88.3 8.1	29 4.0 23.6	252 16.5 11.3	7302 284.7 6.8	1802 117.3 11.3	38 2.9 13.2

4.2 Leaf Analysis

Table 2:General Third Leaf Analysis (% dm) at 4.4 Months in
February

Treatment	N	Р	K	Ca	Mg
Ko Control K ₁ 175 kg K ha ⁻¹ K ₂ 350 kg K ha ⁻¹	1.50 1.47 1.46	0.30 0.28 0.28	1.22 1.31 1.38	0.26 0.26 0.31	0.19 0.17 0.18
LSD (0.05)	0.10	0.04	0.13	0.13	0.03
Significance	NS	NS	*	NS	NS
Mean SE of Diff. CV %	1.48 0.04 5.5	0.29 0.02 7.8	1.30 0.06 7.6	0.28 0.06 37.0	0.18 0.01 9.6

Figure 1: Effect of Season and Age on Third Leaf-K Content

4.3 Harvest Data

ø

Table 3: Cane Yield, Cane Quality and Sucrose Yield

Treatment	TC ha ⁻¹	Sucrose % Cane	T Suc ha ⁻¹
Ko Control Kı 175 kg K ha ⁻¹ K ₂ 350 kg K ha ⁻¹	125 116 116	15.39 15.80 15.58	19.2 18.3 18.1
LSD (0.05)	11	0.65	1.4
Significance	NS	NS	NS
Mean SE of Difference CV %	119 5.2 7.5	15.59 0.29 3.3	18.6 0.6 6.0

5. COMMENTS

5.1 Soil Analysis

Soil K status of the control treatment was above the new F.A.S. threshold of 225 ppm for this soil (Table 1). The Ca+Mg/K ratio was also relatively high due to high Ca and Mg saturation. Soil K levels correctly reflected the different rates of K applied.

Soil analysis in May, 6,5 months after K application showed that the K level in the control had fallen below the threshold value. K levels also declined in the fertilized treatments but levels remained above the threshold value.

5.2 Leaf Analysis

Leaf analysis at 4,4 months of age in February showed that K, P, Ca and Mg content was satisfactory in all treatments but that N levels were apparently deficient. (Note Var. N19 has $\pm 7\%$ lower leaf N content than NCo376).

Leaf K content in the control treatment was above the threshold value at all sampling dates. K application increased leaf K content and correctly reflected the rates of K applied. (Note Var. N19 has $\pm 6\%$ higher leaf K content than NCo376).

5.3 Harvest Data

There were no statistically significant effects of K fertilizer application on cane yields in this trial although yields of the control tended to be higher than where K was applied. Sucrose content was not affected consistently by the treatments and effects on sucrose yields were therefore similar to the effects on cane yields.

6. <u>CONCLUSIONS</u>

- * Soil and leaf K levels in the control treatment were above current threshold levels in this trial. There were no responses to applied K indicating that the threshold values were adequate under these conditions.
- * Care should be taken in interpreting the leaf K levels in this trial since the variety was N19 and nutrient levels have been found to be different to NCo376.
- * This trial has been terminated.

AGK/DMZ/fkn 27.10.92

Appendix 1	Effect of Season on	Leaf-K. Ca and Mr	g
------------	---------------------	-------------------	---

Sampling Date	January) 3.4 m				February 4.4 m			Mairch 5.4 m				
Cane Age (months)												
Treatment	K	Ca	Mg	(Ca+Mg)/K	K	Ca	Mg	(Ca+Mg)/K	K	Ca	Мg	(Ca+Mg)/K
Ko Control K ₁ 175 kg K ha ⁻¹ K ₂ 350 kg K ha ⁻¹	1.24 1.24 1.34	0.33 0.33 0.33	0.22 0.24 0.22	0.45 0.47 0.42	1.22 1.31 1.38	0.26 0.26 0.31	0.19 0.17 0.18	0.37 0.33 0.38	1.41 1.50 1.53	0.29 0.29 0.30	0.14 0.14 0.13	0.31 0.29 0.29
LSD (0.05)*	0.12	0.05	0.04	0.08	0.13	0.13	0.03	0.15	0.12	0.07	0.01	0.06
Significance	NS	NS	NS	NS	\$	NS	NS	NS	NS	NS	\$	NS
Mean SE of Difference CV %	1.27 0.05 7.3	0.33 0.03 13.2	0.23 0.02 10.5	0.45 0.04 13.3	1.30 0.06 7.6	0.28 0.06 37.0	0.18 0.01 9.6	0.36 0.07 32.2	1.48 0.05 5.9	0.30 0.03 17.2	0.14 0.004 5.7	0.30 0.03 14.7