AGRONOMISTS' ASSOCIATION

PROGRAMME FOR ANNUAL GENERAL MEETING

20 OCTOBER 1983

9.00 - 9.30	lea
9.30 - 9.45	Chairman's Report
9.45 - 10.15	Some observations from the Chairman of a Pest and Disease Committee Trevor Polkinghorne
10.15 - 10.45	The field records processing service at the Experiment Station Eric Hulbert
10.45 - 11.15	The SASA's "Field Records System" Bernard Viljoen
11.15 - 11.45	Field records processing on Schmidt Estates Arthur Eggers
11.45 - 12.15	Field records processing on Windemere Farm Chris Chance
12.15 - 12.45	Interpreting field records Murt Murdoch
12.45 - 14.00	Lunch
14.15 - 14.45	Responses to N in ratoon cane grown in various Swaziland soils Noel Leibbrandt
14.45 - 15.15	N recommendations based on soil type Tony Wood and Jan Meyer
15.15 - 15-45	Pre-trashing for eldana control and the effect of N on the incidence of eldana John Lewis

AGRONOMISTS' ASSOCIATION

SOME OBSERVATIONS FROM THE CHAIRMAN OF A PEST AND DISEASE COMMITTEE

By Trevor Polkinghorne

When suggestions were first made that rules and regulations be promulgated in order to control and eliminate pests and diseases in the sugar industry, there were reservations that these conditions would infringe on the right of growers to farm their farms to the best of their ability.

In my experience these were short lived as all could see what the alarming spread of eldana was doing to the sugar industry.

The 1980 drought and our current disastrous situation has highlighted the urgency in trying to control if not eliminate the very obvious threats of pests and diseases. Who knows what could have happened if these rules had been in force when eldana first reared it's ugly head in the Mtunzini area.

When these committees were first formed I was of the opinion that growers needed to be educated to think pests and diseases. As chairman I considered it my duty to stick my neck out and be positive about any action that should be taken. I hung my hat on, 'Age of cane at harvest' in order to restrict eldana.

Our Mill Group was broken up into cells and each cell addressed by members of the Experiment Station, individuals who agreed with the above principle and myself. I was very encouraged by the response. Our group reduced its age of cane at harvest significantly. Unfortunately last year's Umhlali fire and the current drought is making it extremely difficult to continue this process because of size of cane. The point about the exercise at that time was that all growers were now talking eldana and trying to act.

Since those days the other aspects of pests and diseases have been taken up, and items such as Mosaic, Smut, RSD, and disease free seedcane have been actively pursued.

What of the future? I see no problem in implementing the regulations that were recently gazetted by Government. There will be the exceptions, and necessary action will have to be taken. I see the role of committees being one of assistance, of giving encouragement, to pass on information and constantly keep growers of sugarcane on their toes in order to grow better quality cane.

The decisions to go ahead and form Pests and Diseases Committees is the right one and in the interest of all concerned.

20 October 1983

AGRONOMISTS' ASSOCIATION

SASA EXPERIMENT STATION FIELD RECORD SYSTEM - E. Hulbert

Α.	<u>C0L</u>	LECTI	ON AND PROCESSING OF DATA	Appendix	number			
	Inp	ut fo	rm	1				
	Out	put -	individual field analysis	2				
	Out	put -	component analysis	38	4			
Β.	SOM	E USE	S (AND ABUSES?)					
	1.	" <u>Gene</u>	ral Totals"	5				
	2.	Age	of harvest					
		(a)	Age of harvest and eldana (i) Actual (ii) Recommendations	6 7				
		(b)	Age of harvest per se (i) Yields (ii) Decline (iii)Economics (iv) Ranges	8 9 10 5				
		(c)	Cutting cycles	11				
	3.	Vari	eties	12				
	4.	Soil	<u>s</u>	13				
	5.	Rato	on age	14				
	6.	Fert	ilizer	14				

C. Footnotes

١

 The analysis of farm records can be a useful management tool on which to make better decisions. However, judgement is always involved in the interpretation of yield data obtained from commercial production. Therefore it is possible to have more than one interpretation from the same set of data. Where certain ground rules are followed, experimental evidence is used, bias recognised and common sense prevails, such differences should be minor and infrequent.

Nevertheless it must be recognised that wrong interpretations are going to be made from time to time (which could be costly) but on balance there is far more to be gained by using the power of the computer to produce data previously unavailable (except at high cost).

 For proper interpretation to be attempted, a full set of data is essential. Averages on their own can be misleading and the availability of ranges and frequencies form an essential component of data.

		Experi		Stati	A R	- F	In I d	Rect	rds S		 87 Y		ΝΔΜ	F	<u> </u>							Season		
•											,		5									Area Code	OFFI	ICE USE
				Da															Grower No.	OFFI	ICE USE			
12345	9 10	11 12 13 14	15 16	17 18				25 26	27 28	29 30	37 32	33 34	1 decimal	Edecimal	no decimals	1 dacimal		no decimal	1	no decimals	no decimals			
FIELD			S	fic	Trash	Month	IV	E	xtension	Area Cod	ies	[field		Tons	Tons	Fert	illizer (kg	/ha)	Rainfall	Irrigation			
FIELD NUMBER	Ratoan	Variety	Parent	Colour	vs Barn	Month of Hervest	\square					Year	size	Age	cane	SUCTOSE	N	P	ĸ	(mm)	(mm)			
*	*	*	*										*	*	★		•							
												[L
]				1													
						1	1		i															
										1	 	<u> </u>	fi				∤		<u> </u>					
			}				1		<u> </u>	<u> </u>	<u> </u>								1	1				
							1		<u>.</u>	1								<u> </u>	 					
									i	<u> </u>		<u> </u>	 			;	<u> </u>		ļ		┨────┤			
						 	1					 												
							1	ļ			ļ							ļ						-
						<u> </u>	{		<u> </u>	 			<u> </u>					ļ			<u> </u>			
							{		-			<u> </u>	 			┞───			<u>∔</u>		 			┣───
									[1					
				<u> </u>		┢───			<u> </u>	<u> </u>		 	 			┥	{				ļ	├ ──- <u></u> <u></u> <u></u>		
								<u> </u>		<u> </u>	 							 		<u> </u>	· 	┠────╂─		
							·	ļ	ļ	ļ			<u> </u>				 			<u> </u>				
				·					ļ	 	ļ	 		ļ	ļ			 		ļ	<u> </u>	┞		
																	 		ļ	ļ	<u> </u>	<u> </u>		
						ľ											 	L		<u> </u>	ļ	ļļ		
						L												L	ļ ;			ļ		<u> </u>
										1		1			I							t i		1

APPENDIX I

2

7. •

.

•

		SOIL	

SOIL COLOUR

Plant = 0 and thereafter use ratoon number as code eg. 2nd Ratoon = 2 5th Ratoon = 5 2. VARIETIES Use the numeric part of the variety name eg. NCo 376 = 376 N6 = 6 CB36/14 = 3614

3. BURN / TRASH

1. RATOON

1 = Burn 2 = Trash

- 3 = Heavy trash +100 mm
- 4 = Light trash < 100 mm
- 5 = Trash open on the line
- 6 = Cold burn, tops scattered 7 = Hot burn, tops scattered
- 8 = Tops lined and reburnt

4. MONTH OF HARVEST

- 1 = January
- 2 = February, etc

5. EXTENSION AREA CODES

To be supplied by Extension Officer

	NUMERIC CODE	
Swaziland (Quartzite	
Swaziland E	Basic Rock	
Swaziland S	Shales	
Amphibolit	e	
Pre Granite	Quartz	
Tugela Schi	ist	
Granite	· · · · · · · · · · · · · · · · · · ·	
Table Mour	ntain Ordinary	
Table Mour	ntain Mistbett	. 1
Dwyka Tilli	ite	. 1
Lower Ecca	a (Shale)	. 1
Middle Ecc	a (Sediments)	. 1
Beaufort Se	ediments	. 1
Cave Sands	tone	. 1
Dolerite		. 1
Basalt	•	. 1
Cretaceous	Sediments	. 2
Red Recent	t Sands	. 2
Grey Recer	nt Sands	. 2
Alluvium .		. 2

Soil colour	Soil structure	Soil texture*	Drainage	Rooting depth**	Main soil form	Soil code
		Light	Excessive	Deep)	01
Red	Friable [‡]	Medium	Fast	Deep	Hutton, Bainsvlei, Shepstone	02
	l	Heavy	Good	Deep)	03
	Blocky	Heavy	Good	Deep	Shortlands	04
· · · · ·		Light	Fast	Deep)	05
1		Medium	Good	Deep	Clovelly, Griffin	06
Yellow/	Friable	Heavy	Good	Deep)	07
brown		Medium	Moderate to poor	Moderate	Avalon, Glencoe, Pinedene	08
	Heaving blocky	Heavy	Moderate	Moderate	Arcadia	09
	rieaving blocky	Heavy	Poor	Moderate	Rensburg	1,0
Black	Non-heaving blocky	Heavy	Moderate	Moderate	Inhoek, Mayo, Bonheim (red) Tambankulu, Milkwood	11
	Non-nearing blocky	Heavy	Poor	Moderate	Bonheim (non-red), Willowbrook	12
	Organic (>10% carbon)	Moderate	Poor, wet bottom land	Moderate	Champagne	13
Dark	True humic	Medium	Fast	Deep	Inanda/Magwa, Kranskop, Nomanci	14
brown	Humic phase	Medium	Fast	Deep	Hutton, Griffin, Clovelly, Glenrosa	15
			Excessive	Deep	Fernwood	16
	Friable	Light	K Good	Moderate	Cartreff, Glenrosa	17
			Good	Shallow	Glenrosa, Mispah	18
	(Light	Moderate	Moderate	h	19
	Structured subsoil 4	Medium	Moderate	Moderate	Swartland, Valsrivier	2
Grey		Heavy	Poor	Moderate	J	21
	ŕ	Light	Poor	Shallow	h	22
		Medium	Poor	Shallow	Longlands, Westleigh, Escourt,	2:
	Mottled or gleyed - subsoit	Heavy	Poor	Shallow	Sterkzpunt, Wasbank	2
		Medium	Poor bottom land	Moderate	Katspruit, Kroonstad	2!
	Recent allu	vial	Good	Deep	Dundee and Oakleaf	2(

*Soil texture: Light texture 0-15% clay **Rooting depth: Deep usually >1 m Medium texture 16-35% clay Moderate 0,5 to 1 m Heavy texture 36% clay Shallow <0,5 m

. .

SOIL PARENT MATERIAL

EIELD_	ΣR	RAT	¥88.		1L) <u>COL</u>	8/I		(E0.CODES)		AGE			T.CANE			T.CANE /KGAK	ر. معد مع
																	-
37	79	1	376	14	0	0	0	0 0 0 1	4 • 1	18.0	425.	103.7				0.68	
37 57	80	2	376	14	0	0	0	0 0 0 1	4 • 1	20.0	496.	121.0			0.0	0.0 0.75	
37 38	82 79	3	376 376	14	0	2 0	5 0	1002	4 • 1	18+0	435.	106.1				0+47	
38	81	1 2	376	14 14	0 0	2	0	0002	3.7 3.7	15.0 19.0	265. 435.	71.6 117.6			0.0	0.0	
38	82	23	376	14	0	2	9	1001	3.7	13.0	215.	58.1				0,28	
39	79	1	376	14	õ	0	0	0 0 0 1	4.8	18.0	320,	66.7				0.44	
39	81	2	376	14	ŏ	2	0	0 0 0 1	4.8	20.0	429.				0.0	0.0	
39	82	3	376	14	õ	2	9	1001	4.8	13+0	247.					0.24	
4	78	3	999	24	ō	ō	ó	0 0 0 2	6.7	11+0	750.	111.9				0.79	
4	79	5	376	25	ŏ	ŏ	ŏ	0 0 0 2	6.2	14.0	804.	129.7				0.85	
4	80	6	376	25	ō	0	ō	0002	6.2	12.0	901.	145.3			0.0	0.0	
4	81	7	376	25	õ	2	0	0 0 0 2	6.2	11.0	838.	135.2			0.0	0.0	
4	82	8	376	24	ō	1	7	7001	6.2	12.0	866.	139.7				0.91	
40	80	4	376	14	ō	ō	Ō	0 0 0 1	2.3	22.0	413.	179.6			0.0	0.0	
40	81	5	376	14	0	2	ō	0 0 0 2	2.3	14.0	137.	59.6			0.0	0.0	
41	80	0	376	14	Ō	ō	ō	0001	2.0	20.0	141.	70,5			0.0	0.0	
41	81	1	376	14	0	2	ō	0 0 0 1	2.0	15+0	111.	55,5			0.0	0.0	
42	80	0	376	14	0	0	Ō	0001	3.8	21.0	269.	70.8			0.0	0.0	
42 >	81	I	376	14	0	2	0	0 0 0 1	3.8	15.0	330.	86.8			0.0	0.0	
42	82	2	376	81	0	2	9	7001	3.8	12.0	321.	84,5	5 7.04	0.65	0.0	0.65	
43	79	6	376	14	0	0	0	0001	5.0	17.0	420.	84.0) 4.94	0.72	0.0	0.72	
43	81	.0	376	14	0	2	0	0001	5.0	18.0	560.	112.0	6.22	0.0	0.0	0.0	
43	82	1	376	18	0	2	9	0 0 0 1	5.0	13.0	430.	86.0	6.62	0.74	0.0	0.74	
44	79	3	376	14	0	0	0	0001	4.1	20.0	402.	98.0	4.90	0.84	0.0	0.84	
44	82	٥	376	14	0	2	12	0001	3.1	14+0	254•	61+9	5.85			0.58	
45	79	1	376	14	0	0	0	0001	6.8	18+0	657•	96,6				0.0	
45	80	2	376	14	0	0	0	0002	6.8	16+0	550.				0.0	0.0	
45	82	3	376	14	0	2	5	0002	6.8	19.0	929.	136.6				0.89	
46	79	1	376	14	0	0	0	0001	5.0	20.0	513.	102.6				0.0	
46	80	2	376	14	0	0	Q	0002	5.0	16.0	497.				0.0	0.0	
46	61	3	376	14	٥	2	0	0001	5.0	15.0	461.				0.0	0.0	
47	80	0	376	14	0	0	0	0001	3.6	20+0	355.				0.0	0.0	
47	81	1	376	14	0	2	0		3.6		249.				0.0	0.0	
47	82	2	376	14	0	2	9	0001	3.6	11+0	191.+						
48	80	0	376	14	0	0	0	0 0 0 1	5.0	20.0	712.				0.0	0.0	
4 8	81	1	376	14	0	2	0	0 0 0 1	5.0	.15+0	500.	•			0.0	_	
49	79	0	376	14	0	0	0	0001	5.2	/21.0	434.				0.0		
49 49	81 82	1 2	376 376	18	0	2	0	0 0 0 1	5.2	21.0	554.			_	0.0		
		2		18	0	2	11	0001	5.2	14.0	326.						
5 5	79 81	4 5	999 999	22 22	0 0	· 0	0	0002	6.6	15.0	596. 695.				0.0		
5	82	5 6	999 999	22	0	. 2	0	8001	6.6	18+0 13+0	652.		-	•			
5A	78	3	805	24	ŏ	0	8 0	0002	6.6 1.2	15+0							
	78	a			-	Ő.	0			14 .0.							
		1			. •	, ,	<u>, 7</u>		_ 5.1.7.	 .							

<u>a</u> <u>p</u>

SOUTH AFRICAN STAR ASSOCIATION EXPERIMENT STATION

.

SUMMARY OF FIELD RECORDS

::

- -

i

Measurements

19/3/74 TO 19/8/79

SIOMETRY DEPARTMENT

Crop	Code	No of fields	Total hectare	Mean age	Total { t cane	T cane /ha	T cane ∕ha MT	T cane /100MM	Total t suc	Mean Suc %	T suc /ha	T suc /ha M
Plant	1	38,	272,9	21,9	26 634,	98,	4,46	5,65	3 381,	12,8	12,39	0,57
lst ratoon	2	32,	256,9	18,6	22 692,	88,	4,75	6,53	2 895,	12,8	11,27	0,61
2nd ratoon	3	34,	263,6	19,0	22 103,	84,	4,41	5,35	2 903,	12,8	11,01	0,58
3rd ratoon	4	40,	399, 3	19,7	30 738,	77,	3,90	5,24	3828,	12,6	9,59	0,49
4th ratoon	5	26,	216,0	19,8	17 049,	79,	3,99	4,93	1984,	11,9	9,19	0,46
5th ratoon	6	13,	93,8	16,9	7 040,	75,	4,45	5,24	946,	14,0	10,09	0,60
6th ratoon	7	3,	13,3	14,5	1 223,	92,	6,35	6,35	150,	12,1	11,31	0,78
Grand mean	7	186,	1 515,8	18,5	127 476,	84,	4,52	5,90	16 088,	12,7	10,61	0,57
Varieties												
NCo 376	1	57,	469,8	19,1	43 266,	92,	4,81	5,93	5 441,	12,6	11,58	0,61
NCo 310	2	55,	487,1	21,2	38 397,	, 79,	3,72	4,86	4 847,	12,6	9,95	0,47
N55/805	3	34,	223.4	18,1	19 828,	89,	4,91	6,08	2 506,	12,4	11,22	0,62
CB36/14	4	17,	85,0	13,8	7 169,	84,	6,10	8,06	904,	13,3	10,63	0,77
N53/216	5	8,	102,5	18,7	7 113	69,	3,70	5,32	918,	14,2	8,95	0,48
N7	6	1,	10,0	28,0	1 078,	108,	3,85	4,40	134,	12,5	13,44	0,48
NCo 382	7	7,	36,8	17,9	2 298,	62,	3,50	5,02	287,	12,4	7,80	0,44
NCo 293	8	3,	51,2	24,6	3 169,	62,	2,52	3,63	361,	11,5	7,05	0,29
N50/211	× 9	٦,	5,0	18,0	450,	90,	5,00	9,00	58,	13,0	11,70	0,65
Mixed	10	3,	45,0	21,5	4 711,	105,	4,87	5,63	631,	12,9	14,02	0,65
Grand mean	10	186,	1 515,8	18,5	127 476,	84,	4,52	5,90	16 088,	12,7	10,61	0,57
Soil types								•				
Middle Ecca	1	65,	588,9	19,2	50 319,	85,	4,46	5,85	6 361,	12,7	10,80	0,56
Alluvium	2	21,	107,3	17,3	8 729,	81,	4,71	6,10	1 080,	12,4	10,07	0,58
TMS	3	64,	526,0	19,8	43 988,	84,	4,23	5,32	5 667,	12,8	10,77	0,54
Dwyka	4	26,	210,4	21,0	17 820,	85,	4,03	5,07	2 115,	12,1	10,05	0,48
Dolorite	5	10,	83,2	20,8	6 622	80,	3,83	4,94	865,	13,8	10,40	0,50
Grand mean	5	186,	1 515,8	18,5	127 476,	84,	4,52	5,90	16 088,	12,7	10,61	0,57

Components

SOUTH AFRICAN STAR ASSOCIATION EXPERIMENT STATION

DOMETRY DEPARTMENT

SUMMARY OF FIELD RECORDS

•

<u>1973/74 TO 1978/79</u>

Age	Code	No of fields	Total hectare	Mean age	Total t cane	T cane /ha	T cane /ha MT	T cane /100MM	Total t suc	Mean suc %	T suc /ha	T suc /ha M
10 months]	2,	4,6	10,0	293,	64,	6,37	4,86	34,	11,6	7,48	0,75
11 months	2	7,	41,0	11,0	2 321,	57,	5,15	7,94	320,	14,7	7,80	0,71
12 months	3	11,	53,3	12,0	3 955,	74,	6,18	7,28	467,	11,4	8,77	0,73
13 months	4	14,	87,1	13,0	6 409,	74,	5,66	7,12	752,	12,1	8,63	0,66
14 months	5	7,	41,8	14,0	3 388,	81,	5,79	8,98	426,	12,2	10,19	0,73
15 months	6 7	12,	100,9	15,0	8 301,	82,	5,48	6,95	1 133,	13,6	11,23	0,75
16 months	7	10,	60,4	16,0	4 784,	79,	4,95	6,32	586,	12,4	9,69	0,61
17 months	8	13,	106,4	17,0	8 365,	79,	4,62	5,79	1 034,	12,1	9,72	0,57
18 months	9	15,	108,2	18,0	9 768,	90,	5,02	5,98	1 144,	11,9	10,58	0,59
19 months	10	14,	144,1	19,0	11 420,	79,	4,17	5,15	1 487,	13,5	10,32	0,54
20 months	11	13,	122,8	20,0	12 071,	98,	4,92	5,81	1 576,	13,2	12,84	0,64
21 months	12	11,	84,7	21,0	8 111,	96,	4,56	6,02	1 075,	12,7	12,69	0,60
22 months	13	11,	115,6	22,0	10 610,	92,	4,17	5,99	1 366,	13,1	11,82	0,54
23 months	14	10,	77,3	23,0	6 602,	85,	3,71	4,84	1 006,	14,6	13,01	0,57
24 months	15	14,	141,9	24,0	11 364,	80,	3,34	4,16	1 490,	13,1	10,50	0,44
25 months	16	0,	0,0	0,0	0,	0,	0,0	0,0	0,	0,0	0,0	0,0
26 months	17	0,	0,0	0,0	ΰ,	0,	0,0	0,0	0,	0,0	0,0	0,0
27 months	18	3,	20,0	27,0	2 115,	106,	3,92	4,78	249,	11,8	12,47	0,40
28 months	19	4,	41,2	28,0	3 814,		3,31	4,46	401,	11,4	9,74	0,3
29 months	20	1,	15,0	29,0	1 566,		3,60	3,80	187,	11,9	12,47	0,4
Grand mean	20	186,	1 515,8	18,5	127 476,	84,	4,52	5,90	16 088,	12,7	10,61	0,5

Summary

Season	No of fields	Total hectare	Mean t age	Total t cane	T cane /ha	T cane /ha M
1975/76	45.	130,1	18,9	14 416,	110,8	5,86
1976/77	35,	113.9	17,9	12 886,		6,32
1977/78	39.	118,8	19,9	13 388.	-	5,68
1978/79	25,	83,9	21,5	11 011.	131,2	6,10
1979/80	37,	103,7	21,3	13 940,	•	6,30
Grand mean	181,	550,4	19,8	65 641,	119,3	6,04

APPENDIX 4

4 Y P

•

		CA	NE						
Season	ha	Mean age	tc/ha	tc/ha/m	ha	Mean age	tc/ha	tc/ha/m	Sucrose %
1978/79	5655	17,4	99	5,7	1031	17,8	11,2	0,63	12,4
1979/80	4989	18,6	100	5,4	1222	18,6	12,1	0,65	12,8
1980/81	3641	18,5	74	4,0	637	18,7	9,4	0,50	13,0
1981/82	2809	19,1	88	4,6	824	18,1	11,4	0,61	11,8
1982/83	5217	16,1	85	5,3	2 208	15,9	9,6	0,60	11,5
	22306	17,7	90	5,1	5921	17,4	10,6	0,61	12,1

WHOLE EXTENSION AREA

COASTAL SANDS

Season	Ha	Mean age	tc/h	tch/m
1978/79	452	16,9	111	6,6
1979/80	489	19,3	110	5,7
1980/81	295	17,1	82	4,8
1981/82	407	18,9	100	5,3
1982/83	. 777	16,5	86	5,2
	2 4 2 0	17,6	97	5,5

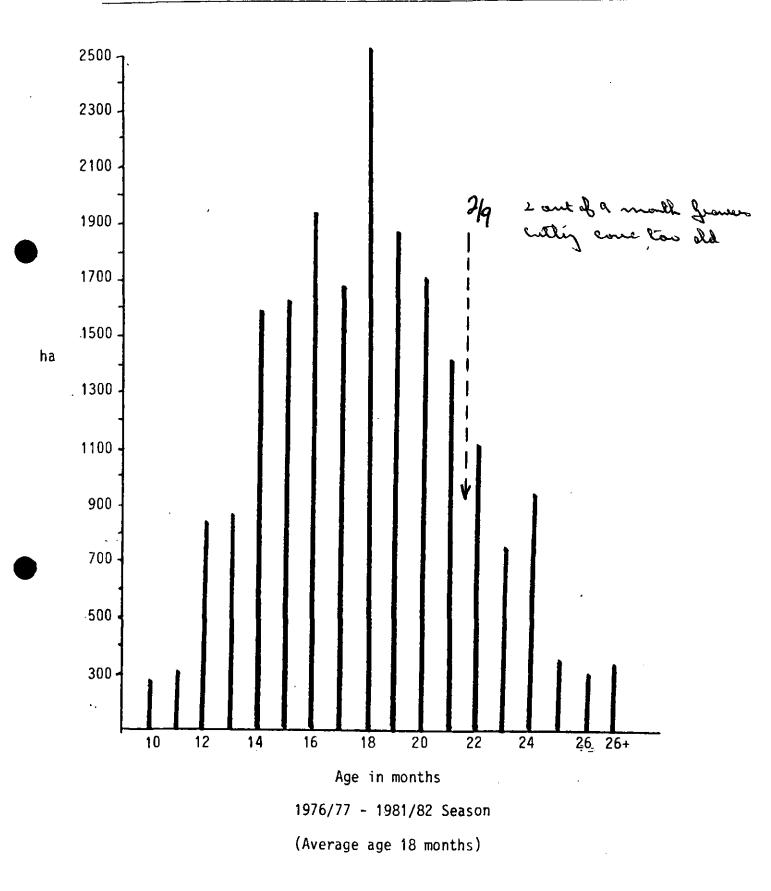
RISING PLATEAU Calad

Season	ha	Mean age	l tc/h	tc/h/m
1978/79	1817	17,4	95	5,5
1979/80	1571	17,8	93	5,2
1980/81	1 166	17,9	64	3,6
1 9 81/82	915	18,1	81	4,5
1 9 82/83	1144	14,5	79	5,4
•	6613	17,2	84	4,9

COASTAL HINTERLAND

Season	Ha	Mean age	tc/h	tch/m
1978/79	2118	16,5	90	5,5
1979/80	1 460	17,5	87	5,0
1980/81	897	17,8	71	4,0
1981/82	818	18,9	85	4,5
1982/83	1612	14,4	75	5,2
	6905	16,7	83	5,0

UPPER PLATEAU Wistul


Season	Ha	Mean age	tc/h	tc/h/m
1978/79	1 268	18,9	113	6,0
1979/80	1 468	20,2	116	5,7
1980/81	1283	20,0	82	4,1
1981/82	669	20,6	95	4,6
1982/83	1684	18,5	98	5,3
	6371	19,5	102	5,2

	Whole ex	ttension area Homogeneous* areas - to					
Season	Cane	Sucrose	1	2	3	4	
1978/79	100	100	100	100	100	100	
1979/8 0	95	103	86	91	95	95	
1980/81	80	79	73	73	65	68	
1981/82	92	97	80	82	87	77	
1982/83	93	95	78	94	98	88	

* 1 = Coastal sands 2 = Coastal hinterland 3 = Rising plateau 4 = Upper plateau

.

DISTRIBUTION OF CUTTING AGE BY HA - DURBAN NORTH COAST EXTENSION AREA

E

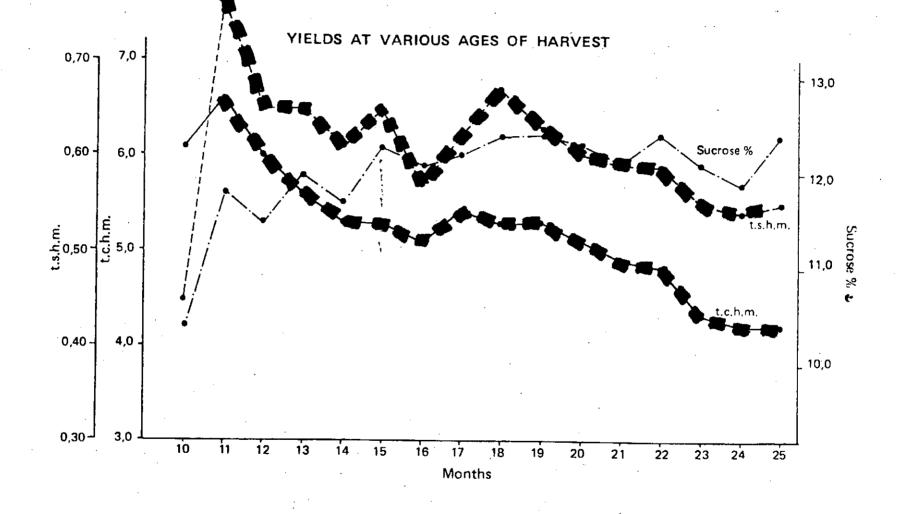
TONGAAT PEST AND DISEASE COMMITTEE

7th December 1982

Dear Grower,

Recently an Eldana meeting for all Tongaat growers was called. The purpose was to review the precentage area being harvested. This is due to the fact that Eldana levels are once again high on the majority of the farms in the Coastal Sands and Coastal Hinterland groups.

table below indicates a recommended age for harvesting and % area to be harvested.


<u>. R</u> F	COMMEN	DATION:				
			DA	RNALL Recomm	endaha	2
			۸.			
AREA	Z ARI	EA	AGE AT	OLDEST CANE		450,000 lin
	HARVES	ſED	MAYAPKIL	AT END OF SEA	SON	Sample
				(JANUARY)	Stor	182/83
COASTAL SANDS	70%	17.10	1 21 (20) 16	18	17,6	16,5
COASTAL HINTERLAND	76%	15.7~	(20(19) 17	17	16,5	.14,4
SING PLATEAU	727%	16-6-	1 21(20) 18	18	17,2	14,5
UPPER PLATEAU	64%	18.7~	23,22) 21	20	19,5	18,5
	k					

С

B

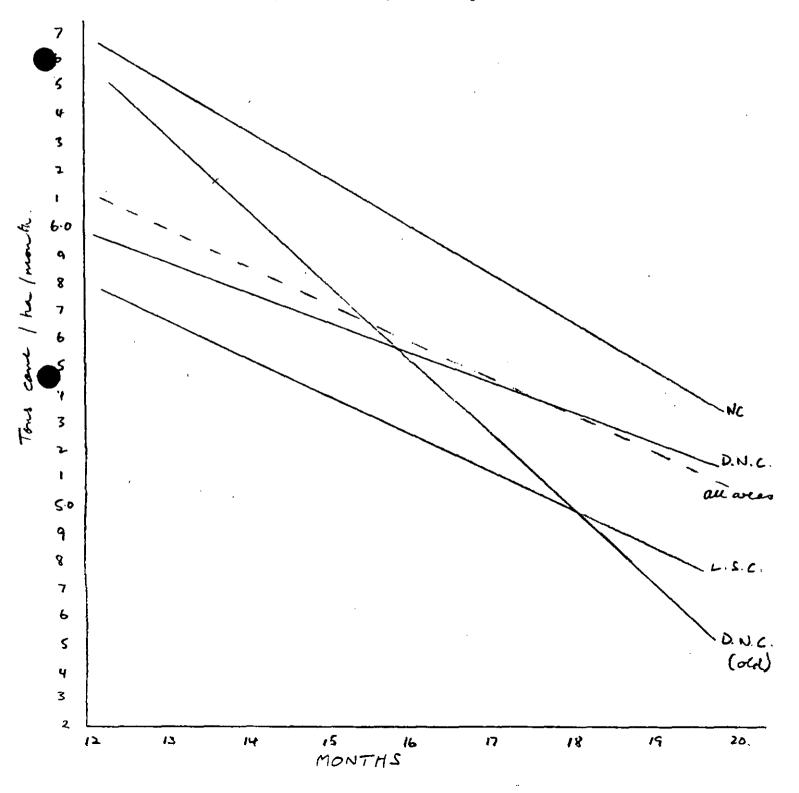
Thanking you,

).0 CHAIRMAN : TONGAAT D COMMITTEE

APPENDIX 8

 $Tc/h/m = 7,43 - 0,1351 \times age at harvest$

DURBAN NORTH COAST


Tc/h/m = 7,33 - 0.1109 x age at harvest

NORTH COAST

Tc/h/m = 8,74 - 0,1705 x age at harvest

ALL AREAS

 $Tc/h/m = 7,83 - 0,13885 \times age at harvest$

THE ECONOMIC EFFECT OF INCREASING THE HARVESTING FREQUENCY

,

.

			15 MONT	H CYCLE	\$.F	r. Come ly	me		18 MONTH	CYCLE		
			/ha.cut,	<u>80 ha c</u>	ut,		۹ ۱	102,08tc	/ha cut,_	66,6 ha	cut,	
· ·	WI	THOUT EL <u>7 4</u> 19 to	LDANA A WITH ELDANA B			THOUT EL 6 798 to		WITH ELDANA 5 370 tons D				
COSTS	R/t	R/ha	TOTAL	R/t	R/ha	TOTAL	R/t	R/ha	TOTAL	R/t	R/ha	TOTAL
Transport (1)	1,04	77,16	- 7 716	1,04	67,33	6 733	1,04	70,70	7 070	1,04	55,85	5 585
Crop Ins. & Levies	0,19	14,10	1 410	0,19	12,30	1 230	0,19	12,92	1 292	0,19	10,20	1 020
Consumbables & Sundries	0,05	3,71	371	0,05	3,24	324	0,05	3,40	340	0,05	2,69	269
Fertilizer	1,91	141,85	14 185	2,19	141,85	14 185	1,92	130,40	13 040	2,43	130,40	13 040
Lic. & Ins.	0,16	12,13	1 213	0,19	12,13	1 213	0,18	12,13	1 213	0,23	12,13	1 213
Office & Admin.	0,24	17,51	1 751	0,27	17,51	1 751	0,26	17,51	1 751	0,33	17,51	1 751
E.S.C.	0,27	19,95	1 995	0,31	19,95	1 995	0,29	19,95	1 995	0,37	19,95	1 995
Misc. (2)	0,17	12,41	1 241	0,19	12,41	1 241	0,18	12,41	1 241	0,23	12,41	1 241
Maint. & Buildgs.	0,24	17,64	1 764	0,27	17,64	1 764	0,26	17,64	1 764	0,33	17,64	1 764
0/H (3)	1,68	125,00	12 500	1,93	125,00	12 500	1,84	125,00	12 500	2,33	125,00	12 500
Labour Wages & (4) other Labour (4)	3,08	228,30	22 830	3,53	228,30	22 830	3,18	216,16	21 616	4,03	216,16	21 616
Rations (5)	0,87	64,73	6 473	1,00	64,73	6 473	0,93	63,11	6 311	1,18	63,11	6 311
Seed (6)	0,36	27,00	2 700	0,42	27,00	2 700	0,33	22,50	2 2 5 0	0,42	22,50	2 250
Weed Killer (7)	0,67	49,60	4 960	0,77	49,60	4 960	0,61	41,29	4 129	0,77	41,29	4 129
Contract/Plant Hire	0,07	5,12	512	0,08	5,12	512	0,08	5,12	512	0,10	5,12	512
Mech. Maint. (8)	1,23	91,25	9.125	1,41	91,25	9 125	1,28	87,15	8 715	1,62	87,15	8 715
Fuel (9)	0,84	62,33	6 233	0,96	62,33	6 233	0,87	59,29	5 929	1,10	59,29	5 929
TOTAL	13,07	969,79	96 979	14,80	957,69	95 769	13,49	916,68	91 668	16,75	897,77	89 777
REVENUE 13% sucrose Gross Net 12,5% Gross	21,84 8,77 21,01	1620,15 650,36		21,90 7,10 21,07	1417,67 459,98 1364,22	141 767 45 998		1487,94 57,26		21,95 5,20 21,13	1178,98 281,21 1134,80	117 898 28 121× 113 480
Net	7,94	589,11	58 911	6,27	406,53	40 653				4,38	237,03	23 703

APPENDIX 10

3% decreosefrundt delg at harnent

	: EXA	MPLE		10		ATION EXTE CU DATE C	TTING	PROGRA	AM 8378	54 ()	
CUT ORDER			VARIETY	CROP	AGE	ESTIMA TC/H/M		CUT	(EST.Y		END DATE
1	7	8.0	376	 P6	20	3.5	100.	20.0	 560.	70.	5.5
∗ 2	8	6.0	310	R2	18	5.0	115.	18.6	641.	107.	6.3
3	6	10.0	805	R1	16	6,5	100.	17.3	1122.	112.	7.5
4	1.	8.0	376	R2	17	3.5	120.	19.5	653.	82.	ö.2
5	3	10.0	376	P	17	6.0	100.	20.2	1209.	121.	9.4
6	10	12.0	376	R1	10	7.1	90.	14.4	1106.	92.	10.6
7	2	6.0	211	R 4	9	4.3	100.	14.6	370.	63.	11.0
8	5	6.0	376	R4	15	4.0	100.	21.0	504.	94.	11.5
9	4	10.0	376	R2	13	5.3	100.	19.5	1035.	104.	12.6
10	9	10.0	376	23	12	4.7	110.	19.6	1014.	101.	1.7
			()		*	(2)	3	Ĥ	5	6

1

.

.

÷.,

S.A.SUGAR ASSOCIATION EXPERIMENT STATION EXTENSION DIVISION

CUTTING CYCLE SUMMARY	
·	
NUMBER OF FIELDS CUT	10.
TOTAL AREA CUT	86.
TOTAL TONS CUT	8224.(7)
AVERAGE CUTTING AGE	18.5 🕢 ***
AVERAGE TONS/HA/MONTH	5.2 9 4

•

.

APPENDIX 11

. *

.

Yield data for variaties

			CA	NE
Variety	Ha	Mean age	tc/ha	tc/h/m
NCo 376	15627	18,0	92	5,1
N55/805	4032	17,0	83	4,9
NCo 310 ·	404	18,0	86	4,9
NCo 293	292	20,1	98	4,9

				SUCROS	E
Variety	На	Mean age	ts/ha	ts/h/m	Sucrose %
NCo 376	4516	17,5	10,8	0,61	12,1
N55/805	632	16,7	9,0	0,54	12,3
NCo 310	212	19,2	10,9	0,57	12,6
NCo 293	38	20,4	12,5	0,61	12,5
N11	34	14,6	10,8	0,74	11,3

Comment

. .

- a) In this sample, all other varieties (12) occupied a total area of less than 300 ha.
- b) 7% of the cane harvested is designated as 'mixed variety' and this is mostly mixed fields of NCo 376 and N55/805. 70% of cane harvested is NCo 376 and 18% is N55/805. Thus 95% of the cane harvested is either NCo 376 or N55/805.

VARIETIES_	Х	<u>SD1L_</u>	<u>LAFF</u>	1 41	ነር ሥ	_1_0	ZH	ZWIH∙	(WEIGHTED N	1EANS
	<u>_NC</u>	<u>U_376</u>	<u>_ [1]</u>	<u> </u>	<u>_M1</u>	<u>XED</u>	M	<u>FANS</u>		
Тн5 өмүка	10	D 8.35	-34 G	9 6.40	н	6.65 4.49	53	6.75		
GRAND MEAN	25	6.80	54 	h.33	·	6.23	9()	6.45		
VARIEIIES	x	<u>SD1L</u>	<u>175</u>	IAH	41	<u></u>	AL_H	<u>ecta</u> r		
ÉMS	-10	23.40	34 🙆	95.10	Я	45.70	53	167.90		
UWYK A 	12) 50.00	20	62.40] 	9.10	36	121.50		
GRAND MEAN	25	73.40	54 L	57.50	4	54.80	90	292.65		

۱

.

Yield of cane on different soil types based on parent material

				CA	NE
	Parent material	Ha	Mean age	tc/h	tc/h/m
	TMS ordinary	6706	17,0	85	5,0
=	TMS mistbelt	5505	19,6	103	5,3
-	Middle Ecca	1710	16,9	89	5,3
	Lower Ecca	1252	17,9	81	4,5
	Dwyka	1004	17,3	83	4,8
	Recent Sand	604	18,2	110	6,0
	Recent Sand red	1015	17,1	89	5,2
	Recent Sand grey	908	17,0	83	4,9
	Dolerite	1011	17,0	91	5,4
	Alluvium	706	15,9	86	5,4
	Alluvium sand	294	15,0	93	6,2
	Alluvium clay	37	13,4	71	5,3

					SUCROS	E
	Parent material	На	Mean age	ts/h	ts/h/m	Sucrose %
7	TMS ordinary	2042	16,4	9,2	0,56	12,1
3:	TMS mistbelt	1360	19,6	12,7	0,64	12,3
8	Middle Ecca	117	15,9	8,4	0,53	11,2
6=	Dwyka	386	17,7	10,7	0,60	12,6
	Recent Sand	33	18,2	12,4	0,68	12,1
z {	Recent Sand red	386	16,9	11,4	0,67	11,8
5	Recent Sand grey	243	16,7	10,2	0,61	11,6
3=	Dolerite	368	17,9	11,5	0,64	12,0
6=	Alluvium	181	17,6	10,6	0,60	12,3
1	Alluvium sand	51	13,3	9,8	0,74	12,2

		CANE					Sucrose %
	ha	tc/h	tc/h/m	ha	ts/h	ts/h/m	Sucrose 70
Plant	3324	102	5,5	823	11,1	0,63	11,8
1st ratoon	3623	94	5,3	930	11,0	0,64	12,0
2nd	3361	91	5,2	899	10,9	0,62	12,2
3rd	3280	90	5,1	834	10,9	0,63	12,3
4th	3077	8 5	4,8	756	10,1	0,57	12,1
5th	2 2 2 8	83	4,8	698	9,7	0,57	12,3
6th	1381	84	4,8	483	9,9	0,59	12,0
7th	647	89	5,2	239	10,6	0,62	12,0
8th	479	90	4,9	159	10,3	0,58	12,4
9th	241	80	4,7	47	11,2	0,62	12,4
10th plus	290			190		-	
_	22306	90	5,1	5921	10,6	0,61	12,1
	\bigcirc		٢			3	

Yields in relation to crop stage

FERTILIZER

Yields per unit of Nitrogen and Potassium

	ha	Tons cane/kg N	Tons cane/kg K
Heavy clay soils	2 116	0,71	0,62
TMS ordinary	2 370	0,74	0,73

Comment:

The above figures are the averages of ten estates.

AGRONOMISTS' ASSOCIATION

SOUTH AFRICAN SUGAR ASSOCIATION FIELD RECORD SYSTEM

<u>BY</u>

BERNARD VILJOEN

ORIGINATION OF THE FRS SYSTEM

The SASA Field Record System (FRS) came into being when an "ad hoc" committee represented by members from the Cane Growers Association, Experiment Station, SASA Data Processing Division and the Cane Testing Service met on the 21st September 1981 to discuss the possibility of collecting field records via Autolab.

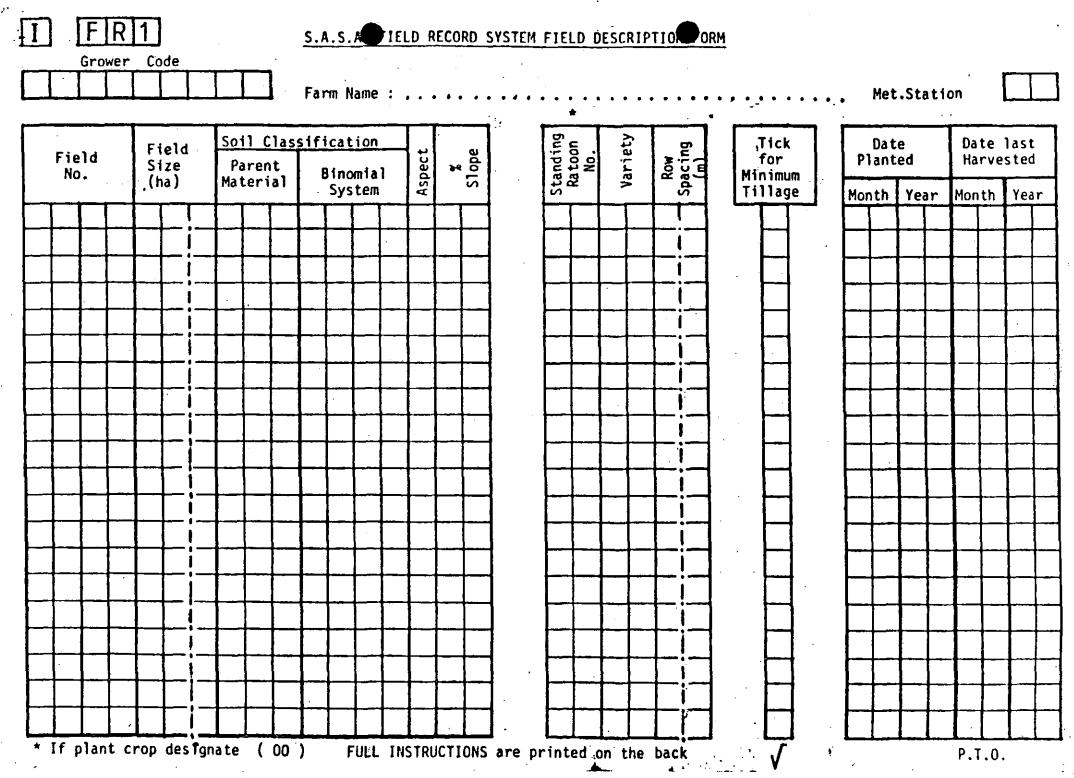
On the 28th January 1982 the SASA Council members agreed that a trial scheme could be implemented at two mills in the Industry viz Maidstone where a pilot scheme of the Experiment Station had been in operation for some years ; and to obtain a wider spectrum of cane varieties and soil types together with a more complicated delivery system, at Amatikulu as well.

OPERATION OF THE FRS SYSTEM

In order to join the scheme a farmer (grower or MCP section manager) has to describe his fields using the form F.R.1 attached*.

His local extension officer is at his service to assist with the task and answer any queries the farmer may have; and also to help in measuring percentage slopes etc. (See Appendix 'A').

Having registered his farm the farmer is required on a daily basis to submit the number(s) of the field(s) that are currently being harvested. The system caters for up to three fields being simultaneously harvested.


For this purpose an FRS tag is used which is attached to the bundle chain and remains with the bundle from the field to the reloading zone for positive identification. When the bundles are reloaded into hilos or railtrucks, the information is transcribed by the zone clerk or haulage driver onto the delivery notes that accompany the load to the mill. The FRS tags are then removed and stapled to the farmer's copy of the delivery note and returned to him for verification i.e. it enables the farmer to check that the information contained on the bundle tag was correct and accurately transcribed onto the delivery note.

INSTRUCTIONS ON HOW TO COMPLETE THIS FORM.

- 1. When joining the S.A.S.A. Field Record System for the take-on then complete <u>all</u> columns with the assistance of your local Extension Officer.
- 2. THEREAFTER, when any of the following changes take place in the fields on your farm - complete a new Field Description Form using the relevant columns as described below:
 - Where a field has been replanted with the same variety after plough out or minimum tillage used; and there is no other change in the field - then complete the Field No. and Date Planted columns only. (Tick minimum tillage if applicable).
 - (ii) Where there is no change in the field BUT a new variety has been planted - then complete Field No., Variety and Date Planted columns only. (Tick minimum tillage if applicable).
 - (iii) Where field layouts have been re-designed resulting in a change in area and numbering then complete all columns. However, where a field has been planted and the Standing Ratoon is 00 the last column, i.e. Date Last Harvested, is left blank.
 - (iv) Fields that have been fallow should be re-registered when planted and <u>all</u> columns completed except the last one, i.e. Date Last Harvested is left blank.

VARIETY	CODE	VARIETY	CODE	SOILS	ALPHA CODE
Mixed N:Co 376 N:Co 310 N:Co 293 N: 50/211 N:Co 382 Co 331 N:Co 339 N:Co 292 N:Co 334 N:Co 301 N 7 Co 281 N: 51/539 N: 51/168 Unknown N: 51/539 N: 51/168 Unknown N: 53/216 N: 52/219 N: 10 Co 290 CB 36/14 CB 38/22 N: 55/805 N 6 N 8 N 11 POJ 2725 POJ 2878 Uba J 59/3	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 9 30	N 12 N 13 N 14 N 15 N 16	31 32 33 34 35	Swaziland Quartzite Swaziland Basic Rock Swaziland Shales Amphibolite Pre Granite Quartz Tugela Schist Granite Table Mountain Sandstone Table Mountain Ordinary Table Mountain Ordinary Table Mountain Mistbelt Table Mountain Trevanian Table Mountain Boulder Bed Dwyka Tillite Lower Ecca (Shale) Middle Ecca (Sediments) Beaufort Sediments Cave Sandstone Dolerite - Basalt - Diabas Dolerite Basalt Cretaceous Sediments Recent Sands Red Recent Sands Grey Recent Sands Alluvium Alluvial (Sand) Alluvial (Clay) Mixed	DWY LES MES BFS CSS

NOTE: Obtain the Binomial System code; and your nearest Met Station code, if you do not maintain rainfall records on your farm; from your local Extension Officer.

· ^

APPENDIX "A"

53

•

•

.

SOUTH AFRICAN SUGAR ASSOCIATION FIELD RECORD SYSTEP

•

															,
	REFI	FRS16	- 22/06/83				FIELD DE	SCREPTION	t						
	FIELD	SIZE MA	PARENT MATERIAL	BINGMIAL System	ASPECT	SLOPE \$	RATOON	VARIETY	RUM Space	TILLAGE	PLANT DATE	HARVEST DATE	F LELD CHANGE	CANE AGE At 1st may	 . . .
	001	1+4	MES		FLAT		06	23	1,3	CONVENTIONAL	04/74	12/81	12/81	-	••
	001	1+4	MES		FLAT		00	2	1,3	RINIRUR	03/82			13	
	500	.7	MES		FLAT			2	1+3	CONVENTIONAL	04/74		12/81	-	
	002	.7	MES		FLAT		01	2	1,3	BININUR	10/41	01/43	· ,	3	
	0034	2+0	MES		FLAT		. 05	. 3	1,3	CONVENTIONAL .	. 11/74	10/82	10/82	-	· • ·
•	003A	2+0	MES		FLAT		00	32	1,3	ALNERUN	02/43	. و ماد در د سور دار محاصر		2	
	0038	212	RES	• • • • •	FLAT		60	2	1.3	CONVENTIGNAL	04/75	11/42		5	· •
	.0044	2,1	MES		FLAT		06	2	1,3	CONVENTIONAL	01/75	11/82		5	
	0048	2.4	MES		FLAT		06	2	1,3	CONVENTIONAL	04/75	11/82		5	
	005	2,1	MES		FLAT		03	2	1,3	CONVENTIONAL	04/27	12/81		16	
	006	1,7	MES		FLAT		13	z	1,3	CONVENTIONAL	09/66	12/82		•	
	007	2+3	MES	•••	FLAT		50	2	1,3	CONVENTIONAL	01/74	12/82	. ,		
	008	5,0	MES		FLAT		07	23	1,3	CONVENTIONAL	10/72	06/82	² . 06/82	•	
	009	3,0	MES	· ·	WEST	2.0	15	2	1,3	CONVENTIONAL	10/64	01/83		3	
	010	1.4	MES		FLAT		05	z	1,3	CGNVENTICNAL	10/72	01/83		3	
	011	2,7	MES		wE ST	1.0	13	2	1,3	CONVENTIONAL	03/65	01/82		15	
	0124	4.1	MES	·.· •	KEST	2.0	04	z	1.3	CONVENTIGRAL	10/76	. 51/42 .		15	
	0128	7,9	RES		WEST	2.0	05	2	1,3	CORVENTIONAL	09/75	09/82	:	1	
	012C	3,0	RES		WEST	3,0		23	1.3	CONVENTIONAL	02/71		09/78	-	
•	0120	3,0	HES	· •• · • • • • •	WEST	3,0	02	26	1,3	CONVENTIONAL	08/79	06/82		10	
	C13A	1,0	MES		EAST	22.0	05	. 2	1,3	CONVENTIONAL	10/75	10/82		é	
	0136	1.5	MES	÷ .	EAST	6.0	05	2	1,3	CONVENTIONAL	10/75	16/82	-	•	
	0144	1,9	MES		EAST	20.0	07	2	1,3	CONVENTIONAL	02/14	11/82	-	5	
	0148	1.9	MES		EAST	15,0		2	1,3	CONVENTIGNAL	11/67		06/81	-	
	0148	1,9	MES		EAST	15.0	01	2	1,3	CONVENTIONAL	09/81	01/#3		3	
			-					-	•••					-	

:

Where cane is despatched directly from the farm to the mill and is not reloaded; the delivery note is completed on the farm.

On arrival at the mill weighbridge the delivery details are punched into the Autolab terminal at the same time as all other information required for cane payment.

In Autolab a system of monitoring the data for accuracy and other error checks has been incorporated and the Senior Technologist at the mill is responsible for this part of the operation.

From these details the field number is printed on the daily sucrose advice and a weekly summary is produced by Autolab and sent to the farmer by the CTS. The farmer is required to verify the data and make amendments where necessary (See Appendix I).

This data check is essential to ensure that the data is accurate. Errors, missing information and wrong allocations are corrected by the CTS when the data check form is returned and these amendments are relayed to the data processing division in Durban, so that when the farmer receives his productivity reports they are correct.

The system has been refined to the point that when these basic steps and checks are complied with, then 100% accuracy is attained.

Once a month the farmer is required to submit form FR2/3 attached*. He has the choice of only "ticking" the harvest completed column and obtaining a print-out containing limited information; the more enthusiastic farmer will complete all the relevant columns and be supplied with a comprehensive report for each month of the cutting season.

At the end of the season an annual report is compiled by the SASA computer which is based upon the current season's data, and in combination with previous season's data, field history and homogeneous area reports are produced.

This annual report is sent to the farmer who is then at liberty to call in his extension officer and assisted by this report will be able to make meaningful decisions.

ADVANTAGES OF F.R.S. OVER OTHER SYSTEMS

The FRS has four clear advantages over the existing Experiment Station's record system. They are as follows:

1) FRS is able to give accurate field sucrose figures because the actual sucrose tests and cane tonnages relating to each field are used, and

APPENDIX I _,

.

.

-

٠,

1.8

.

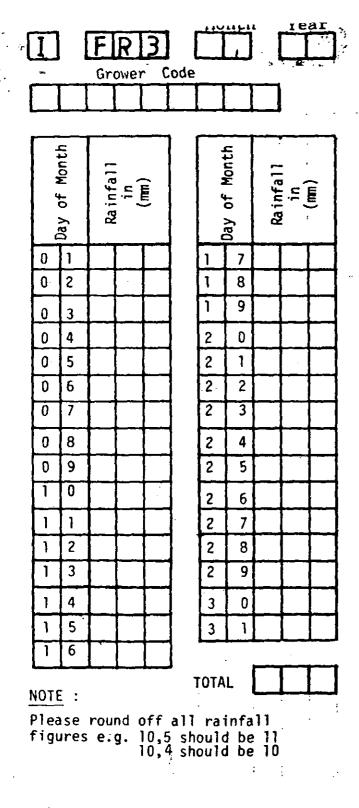
B3/09/26 WEEK NUMBER 1 B3/09/26 WEEK NUMBER 1 OCLIVERY CONSTGNMENT TONS BUNDLES NUMBER 100 CANE DELIVERED FLD1 HUN FLD2 BUN FLD3 HUN REMARKS B3/09/12 S0100 S0100 O O B3/09/12 S0100 S0100 O O NOTHING ENTERED ON C/D NOTE B3/09/22 S0100 O O O O O NOTHING ENTERED ON C/D NOTE B3/09/22 S0100 O O O O O O B3/09/22 S0100 C/D O O B3/09/23 S0100 O O B3/09/24 S0100 O O C/D <t< th=""><th>A53029023</th><th></th><th></th><th></th><th></th><th></th><th></th><th>INDUSTRY CELLY F.R.S. D</th><th></th><th>PAGE 5</th></t<>	A53029023							INDUSTRY CELLY F.R.S. D		PAGE 5
DAT NGTE CANE DELIVERED FLD1 HUN FLD2 BUN FLD3 BUN B3/04/10 S0(44) 23,900 5 D01 5 D 0	83/64/28				* 4 8	****				WEEK NUMBER 24
03/04/22 08/04/22 00/04/24 0 0 0 0 NDTHING ENTERED ON CZU NUTE 03/04/23 08/04/23 08/04/23 0 0 0 0 03/04/23 08/04/23 00/04/23 0 0 0 0 03/04/23 00/05/23 00/04/23 0 0 0 0 03/04/23 00/04/23 0 0 0 0 0 03/04/23 00/04/23 0 0 0 0 0 03/04/23 00/04/23 0 0 0 0 0 0 03/04/24 0 0 0 0 0 0 0 0 0 03/04/24 0 <				-					REMARKS	
03/05/23 08649 11,600 4 201 4 0 0 8/202/23 08235 24,540 6 201 6 0 0 9/202/23 08235 24,540 6 201 6 0 0 9/202/23 08/74 23,820 4 0 0 0 TAG NOT BUPPLIED - DRIVER WROLE *MISSING* ON C/D NUTE 8/202/24 08/90 22,380 5 201 4 0 0 NOTHING ENTERED ON C/D NOTE	B.3 (+++ 1.2)	5 1 1 1 1 1 1	23,900	5	201	5	n	U		
R:<07/23 50735 24,540 6 201 A 0 0 03/04 24 50/74 23,020 4 0 0 0 TAG NOT BUPPLIED - DRIVER WROLE *MIBBIND* ON C/D NOTE 03/05 24 50/790 22,380 5 201 4 0 0 NOTHING ENTERED ON C/D NOTE	0.570222	1-B1-Y2	20,640	4		U	0	U	NOTHING ENTERED ON CZU NUTE	
H3707/23 50735 24,540 8 201 A 0 0 03709/24 58774 23,020 4 0 0 146 NDE SUPPLIED - DRIVER WRDTE "NIBSING" DN C/D NDTE 83709/24 58774 22,380 5 201 4 0 0 NDTHING ENTERED ON C/D NOTE	83-35-23	18A49	11.600	4	201	4	U	U		
83705 24 18790 22,380 5 201 4 0 0 NOTHING ENTERED ON CZD NOTE	83707723	50735	24,540	6	201		0	0	•,	
	0.0164 (14)	58 /74	23,020	4		0	0	0	TAG NOT SUPPLIED - DRIVER WROTE "MISSING"	DN C/D NUTE
	83.10	-	•	5	201	4	0	0		
124,080			126,080							

LASTE CELLING	- Firase check that the number of bundles allocated to each field in the above table is correct.
*********	lf found correct, no further action is necessary.

.

.

.


lnoss out the incorrect field number and/or number of bundles, and alongside maye the correction. Insuring that the total number of bundles allocated equals the total number shown for each delivery.

TREASE FEILEN THIS FORM TO THE C.T.S. CHEMIST WITHOUT-DELAY BO THAT THE AMENUMENTS CAN BE PROCESSED TO ENSURE ACCURACY OF YOUR FIELD RECORDS

<u>NB</u> Raii	П																	Fie				}
Rainfall ru					 													Field No.			FR	ļ
return on	لمصط	 4	4				 	h <u></u>	.		<u>ل</u> ـــــا	L	!		د۱	l	<u> </u>				12 12	
the	\square																Are	a	¥			
back							_										Harve	sted				
	\square	\neg															(Kg/ha) N			FADM NAME .		
								_										Ferti Appli				
		 		 													(Kg/ha) P	Fertilizer Application	•		S.A.S.A.	
														·			(Kg/ha) K				A. FIELD	
					 												ha)				2	
•													 				Tot	al		1	RECORD SYS	
																	Irriga (m	n)			TEM	
																			- :		•	
																	Tor Sec Car	ed			, .	
				 	· · ·	l		L	L	L			l	 								
[lick these				 					<u> </u>	I		{	<u>ا</u>	L				vest leted	}			
Se columns				 		L	L	l	<u> </u>	<u> </u>		L_ 	<u> </u>	<u> </u>				Change	*	8		-
								[<u> </u>	[<u> </u>						Nemat	icide]	< 7		Month
where and																	Ripe	ner]			Year
aide stinna	:																Herbi	cide	}			4
D																						*ر

•

.

FICLU UNANUL

<u>~</u>.

This column should be 'ticked to indicate:-

- (i) The field has been ploughed out.
- (ii) The field has been planted useing minimum tillage. Please remember to 'tick' the minimum tillage column on the Field Description Form.
- (iii) A new variety has been planted.
- (iv) When fields that have been FALLOW are planted.
- (v) Where field layout has been re-designed and there is a change in area and/or field numbering.
- NB When a field change has been indicated on the Monthly Return then a FIELD DESCRIPTION FORM (FR1) showing the changes made <u>MUST</u> accompany this form.

**B. PARTIAL HARVEST

When a field has been partially harvested, and only then; the area should be stated. DO NOT 'tick' the Harvest Completed column, until the balance of the field has been completed.

A partial harvest is when:-

- (i) A field is only partially cut leaving the balance for seedcane.
- (ii) A fire has forced the cutting of a portion of the field that is not ready for harvest but is still millable and the balance will not be harvested for at least 3 months.
- (iii) Contingency cutting along access roads following wet weather, or where firebreaks have been cut and the intention is not to complete the harvesting during the next 3 months.

This does <u>not</u> include firebreaks for burning purposes where the field will be harvested within a day or two.

<u>NB</u> Where a field is not completed at the end of the month but will be completed during the ensuing month does not constitute a partial harvest. It should be left until the harvest is completed and then 'ticked'.

C. HARVEST COMPLETE

This column is 'ticked' to indicate that the field has been harvested and \underline{all} cane has been removed and despatched to the mill.

2

NB Cane slashed back to create a new ratoon e.g., after a fire or severe drought; where the cane was unmillable, is treated as having been harvested and the harvest completed column should be ticked. Obviously there will be no vield figures from such a field

~ ·

- 2) the productivity reports are produced within the current season's operation with a final annual report immediately available at the close of the season, without further input by the farmer*, and
- historic records for two full crop cycles are produced for comparison and evaluation**, and
- the farmer need only prepare a monthly statement i.e. his monthly return, and this document serves as a valuable control and managerial aid.
 - * See Appendix II
 - ** See Appendix III.

The disadvantages of using a micro-computer for field record purposes by a farmer, are as follows:

- 1) No homogeneous area comparison reports are available against which to relate and evaluate his own performance, and
- 2) he does not have an accurate sucrose yield per field; but out of necessity must use the average sucrose shown on his weekly CTS return to evaluate the performance of that field unless he identifies the field of origin for each consignment. Should there be mixed consignments (which are common on small farms) or a field harvested across two or three weeks in different combination with other fields then a masking of the true value of these varieties and their performance on the soils within those fields is evident, and
- 3) the use of a micro-computer entails entering the details of all consignments and allocating sucrose on a daily basis i.e. a duplication of work already being performed, which could be a tedious operation whereas the FRS system does this automatically, and
- 4) the power of the SASA computer employed with the FRS system readily affords detailed inspection and comparisons of historical data and caters for amendments at bundle level, whereas the records maintained by a micro-computer are limited in storage capacity unless large sums of money are spent on increasing this capacity, and
- 5) in addition the annual maintenance contract for such a machine could be expensive. Alterations to or upgrading of the existing software would be on an individual basis and this would be expensive, whereas there is no expense incurred by the farmer for the maintenance of the FRS system.

.../4

•

•`•

.

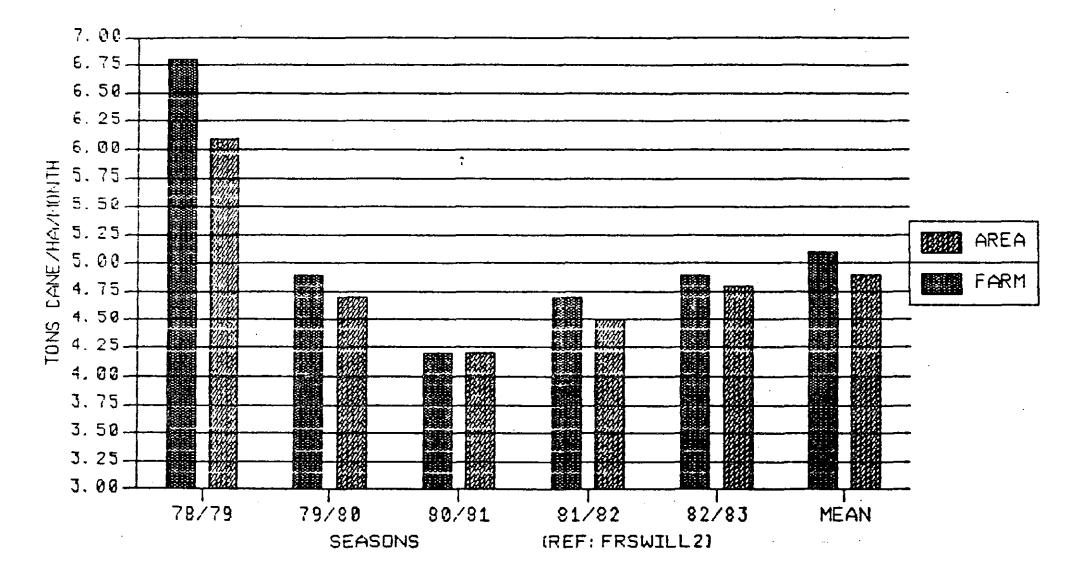
	-		 		
 SOUTH AFRICAN S	SUGAR ASSOCIATION F	IELD RECORD SYSTEM		48	

6	EFIFRSO	9 - 2	22/06/83	•		MO	INTH ENDI	NG:31/03/8	3	-			•	. .
FIELD NO.	AREA CUT	RAT	AGE (ATH)	YAR	RAIN Airrig (mm)	******* 71ELO	JUNIT	TONS CANE /HECT	/HECT /MONTM	/HECT /100mm	******* POL X	RELATIVE PADD- UCED	SUCROSE /HECT	/HECT /MONTH
002	, 1	00	15	2	1201	40,7	5,4	69,4	4,4	5,8	13,3		5,3	,62
003A	2.0	05	16	3	1291	132,1	5,3	\$\$, 9	4+1 	•	13,5	17,6	• • • • • • • • •	-
0038	2,2	05	17	Z	1372	179,1	6,2	\$1,4	4,8	5,5		23,1	10,5	,62
004A	2,1	05	16	2	1299	176+9	5,9	84+2	5,3	6,5	13.2	23.3	. 11+1	,70
0048	2.4	05	1.	2	1299	197.8	4,9	82.4	5.2	6,3	. 13+4	26,5	11.0	,69
006	1.7	12	12	- 2	881,	126,3	4,9	74+3	6+2	8,4	13,3	16,8	9,9	.82
967	2,3	90	12	2	881	180,4	5,5	78,4	6,5	8,9 ´	13+4	24+F	10.5	, 86
008	5.0	07	12	23	1086	277+6	5,3	55 .5	4.6	5•1 	1214	34,4	6,9	.57
009	3,0	14	13	2	964	262,4	5,0	87.4	6,7		12+6	33.0	11.0	,83
310	L++	08	13	2	966	115+4	5.0	82,4	6,3		12.17	14,6	10,5	
0128	7,9	04	14	2	1129	550,7	6.0	69.7	5:0	6.2	12+9	71,0	9+0	,64
0120	3+0	01	14	26	1419	191+6	5,6	63,8	4.8	4,5	12+5	23,9	5.0	,51

,

APPENDIX III

•. a:


*`•

.

REF	FRS11	- 22	/06/83	,		ANN	UAL REP	ORT OF CA	NE YIEL	.DS 87 F	IELD AS	AT THE 1	982/83	SEASON	·			•	•
HARV DATE	AREA HARV		AGE (MTH)	RAIN 41RRI (MM)	IG #N	FERTILI	LEA+++	*****	+++TON:	S CANE++ /HECT	/HECT /100NM	****8	ELATEN	E SUCRO	SE++++ /HECT /MONTH			LS### MERBIC	••
											WATER					,			
	·D:031	PLA	AT ED: 0	4/14	2126:	1+4HA	VARIET	¥:23 PAR	ENTIMES	S SINGA	IALT	ASPECT	IFLAT	SLOPES	RON	SPACE	2 1,30	TILLS	CON
06/75	1.4	0	14	1255		,		95.0	67,9	4,8	5,4					NQ	NO	NO	
09/76	1.4	1	15	2026				96+0	68.6	4+6	3,4					NO	NŪ	NO	
10/77	1.4	2	13	1771				91+0	65+0	5+0	3,7_	··•• ·· ·					NO .	NO_	
05/79	1.4	3	19	2282				129+0	92+1	4+8	4+0	• • • • •			-	NO	NO	YES	-
08/80	1,4	4	15 16	1163			1.4.4	70.0	50+0	3,3	4+3	••			•	NO	NO	YES	•
12/81	1.+	,	16	1930	113	14	144	72,0	51+4	3,2	2.7	•				NO	¢ NO	NQ	
	1001	PLA	NT ED: O	3/82	\$12E+	1,4HA	VARIET	V3 2 PAR	ENTINES		IALZ	ASPECT	IFLAT	SLOPE	AON	SPACE	r 1,3)	TILLE	RIN
		0		628	5 130) 61	170									NG	ND	NŪ	
IELD N	0:002	Pi A	NTED:0	4/74	51252	. 7HA	VARIET	YIZ PAR	ENT:MES			ASPECT	: F1 AT	SLOPE	80v	SPACE	1 1.31	• TELLI	CON
0/75	.7	0	24	1255	i	-		67.0	95,7	6,8	7.6		• •			NO	NO	NO	
3776	• 7	1	14	1945	i			57.0	81,4	5,8	4.2	- ·	•			NO	NÖ	NŪ	
3/11	• 1	2	14	1853				54.0	77.1	5,5	4+2		•	•	• •	NŰ	NO	NŪ	
2/78	.7	3	14	1835		:		61,0	87.1	6,2	4,7			• •		NO	NO	NŪ	•
0/63	, 7	4.	18	1529				46,0	65.7	3.7	4,3					NØ	NŰ	YES	
1781	+1	5	17	1924	46	15	76	39,0	55,7	3,3	2,9	•••				NO	NO	NÜ	
		PLA	TED:1	0/81											•				• •
1783	+7		15	1201		- +		48,7	69.6	4.4	5.8	13,4	. 6,5	9,3	,62	NO	NO	YES	
		T		124	114	. 26	154	··· •	• • • •		يعر حجرت والمراجع	ورو تهدي الم المعينة	المتناءم الابت		سطی افراد مار م	., NQ	, NG _	. ND	
								•		• ••		·· ·• ·			-				• •
IELC N	0:003A	PLA	VFED:11	1/74	SIZEI	2,0HA	VARIETI	TE 3 PAR	ENTIMES	BINGN					RON		i 1,3j		
6/76	2.0	a	19	2590	•		•	291.0	145.5	1.7	5.6	· · · · · · ·				NO -	NO		
8/77	2+0	1	14	1663				157.0	78,5	5.4	4.7				· · · · · · · · ·	NO		NO .	-, ~
7/78	2.0	2	11	1494				168,0	84.0	1.6	5,6					NO	NÜ		
0/75	2.0	3	15	1424				121.0	60.5	4,0	4,2					NG .	NO	YES	
6/81	2+0		20	2160			169	196.0	98,0	4.9						NO.	NO.	NUD	
0/82	2.0	5	16	1291	132	15	162	132,2	66.1	4,1	5,1	13,5	17,4	4,9	156	NC	NO	YES	
LELD N	0:0034	PLAN	TED:02	2/83	SIZEZ	2.0HA	VARIETI	132 PAR	ENTIMES	6 ING#	IALI	ASPECT	FLAT	SLOPE	ROM	SPACE	: 1,3/	• T[LL#	RIN [
		o		74			80					• • •				NO	NŰ	NŰ	
		•	_																
	95036					Z,2HA	VARIETI	11 <u>2</u> PAR		BINON		ASPECT	:FLAT	SLOPE‡	RG		1,3/	TILL:	CON
								311 0	141.4	10.1	7.6					NO	NC	NÛ	
6/76	2.2	2	1.	1854															
6/76 8/77	2.2	ī	14	1003				240.0	105.1	7,8	6.6					NÖ	NO	NO	
6/76		-						240.0	105.1										

.

TONS CAN PER HECTARE PE MONTH FOR LAST 5 SEASONS

Unless the farmer owns or intends to make use of a computer for other purposes it does not justify the capital outlay for a computer for the sole use of recording field yields.

The recording of field numbers will also be a valuable aid, should reduced frequency testing of cane be introduced, and for cane quality control; both of which are at present undergoing consideration by the Industry.

Last but by no means least is that given sufficient support, the information gained from across the whole industry, will provide the Experiment Station with a valuable data bank. This information will then enable the Experiment Station to make evaluations and recommendations that will be to the benefit and improve the profitability of the Industry in general.

GENERAL PROGRESS

Since the introduction of the pilot scheme many improvements and refinements have taken place. The trial scheme has now been extended to include two MCP sections of Smith Sugar and two MCP sections of Tongaat-Huletts and this has brought a third mill (Gledhow) into the operation.

The rate at which this project can be extended to incorporate all mills is dependant upon three factors:-

- 1) the success of the pilot scheme, and
- 2) the availability of Autolab at the mills, and
- 3) a decision by Council to proceed with the implementation of the scheme beyond the current trial stage.

DIS: FRS DOC: FRS 4

YATZUGNI AADUZ NADIATA HTUOZ

AGRONOMISTS' ASSOCIATION

ĽŤĔŕĎ*ŸĔĊŎŸĎŤĞŶĊŔŶŎĔĔ

srepur Eggers

THIS PACKAGE CONSISTS OF:

A. FIELD RECORDS PROGRAM.
B. RAINFALL AND ESTIMATE PROGRAM.

The Field records Program of this package records for each field the following data:

Response to Rainfall, N, P, & K. 1 • X Sucrose X, Tons, Yield & Growth. .140iaw agaravA bna absol to radmuN • ٢ • ! Tons Cut, Yield & Growth. Asinfall, Current and Last Cut. • 4 •6 Age, Current and Last Cut. rsweiboliy ni beilqqe y & 9 N feel • + ٠ə abol aqvT fio8 • P .nootsi\tnsl9 .vteinsV • > ٠q , бөлА • 6 . nadmun blaif

.eisylans & sbroben biroteiH

Weedicide and other Operations Records.

MARALL & ESTIMATE PROGRAM

This program records the amount of rainfall a field of a particular age has had since it's last harvest. This information is automatically recorded in the appropriate field record for use in analysis of yield per 100 mm of rain.

Automatically adjusted are the following: a. Average for that month. b. Cumulated annual rain to date. c. Rainfall for each age group. d. Average for each group. e. Percent actual/average for each group. e. Appropriate actual Field Record. f. Appropriate actual Field Record.

ESTIMATE OF CROP

Age of each field is adjusted for the

This part of the program will keep record of your estimate on a monthly or daily basis or as required. You will be able to print the Estimate in a full Estimate Book format.

.dinom wen

•6

• 11

• W

а т

s, 🕯

NUMERIC FIELD RECORDS

2	
۷	۰.

				5	NO AL	W6 /D	NO (N	405	DATN	ACT OUT	TONE OUT.		- 69011714	_T/100000.	POL %-	5/HA/H
			T-VARIETY-					AGE			TONS CUT- 0.00	0.00	0.08	0.00°	0.00	0.00
1	3.5	1	376	12	165	0	165	17	1033	Û		0.00	0.00	0.00	0.00	0.00
2	2.2	4	N13	11	170	34	170	6	227	0	0.00			0.00	9.00	0.00
3	5.6	2	376	12	170	34	170	12	554	0	0,00	0.00	0.00		0.00	0.00
4	4.6	0	N11	13	105	95	105	10	539	0	0.00	0.00	0.00	0.00		
5	1.1	3	376	13	0	0	0	1	31	15	85.00	77.27	5.15	9.10	12.10	0.62
6.1	6.0	4	805	12	155	Û	155	11	546	0	0.00	0.00	0.00	0.00	0.00	0.00
6.2	1.9	5	N13	13	0	Û	0	1	31	16	180.00	94.73	5.92	9.45	12.50	0.74
7	1.3	5	376	10	170	35	170	15	784	Q	0.00	0.00	0.00	0.00	0.00	0.00
8.1	11.2	3	376	12	0	0	0	1	31	15	900.00	80.35	5.35	9.46	12.20	0.65
8.2	2.3	6	376	12	165	31	165	6	227	0	0.00	0.00	0.00	0.00	0.00	0.00
9	1.5	3	376	14	160	45	0	7	351	0	0.00	0.00	0.00	0.00	0.00	0.00
10	3.5	5	376	14	205	0	0	5	188	Û	0.00	0.00	0.00	0.00	0.00	0.00
11	3.4	1	376	13	170	Û	170	8	454	0	0.00	0.00	0,00	0.00	0.00	0.00
12	3.6	5	805	13	170	35	170	10	539	6	0.00	0.00	0.00	0.00	0.00	0.00
12.1	4.2	5	376	13	205	0	0	12	554	0	0.00	0.00	0.00	0.00	0.00	0.00
12.2	2.6	0	376	13	65	102	85	7	351	0	0.00	0.00	0.00	0.00	0.00	0.00
14	3.5	1	805	13	155	55	155	6	227	0	0.00	0.00	0.00	0.00	0.00	0.00
- 4	3.4	4	376/805	12	165	0	0	12	554	0	0.00	0.00	0.00	0.00	0.00	0.00
16	2.5	5	376	13	0	Û	0	1	31	16	205.00	82.00	5.12	8.18	12.60	0.64
19	1.6	5	376	14	150	22	0	6	227	Û	0.00	0.00	0.00	0.00	0.00	0.00
20	6.5	1	376	12	130	22	130	12	554	0	0.00	0.00	0.00	0.00	0.00	0.00
21	4.4	7	376	12	165	32	165	15	784	0	0.00	0.00	0.00	0.00	0.00	0.00
22.1	2.6	0	376	12	95	65	0	8	454	0	0.00	0.00	0.00	0.00	0.00	0.00
22.2	4.5	6	376	12	170	0	170	6	227	0	0.00	0.00	0.00	0.00	0.00	0.00
24	3.6	2	805	12	155	0	155	8.	454	0	0.00	0.00	0.00	0.00	0.00	0.00
25	1.9	3	N11	25	166	32	166	9	521	Û	0.80	0.00	0.00	0.00	0.00	0.00
26	4.4	1	376	12	164	33	164	10	539	0	0.00	0.00	0.00	0.00	0.00	0.00
27	4.6	2	805	12	85	0	9	5	188	0	0.00	0.00	0.00	0.00	0.00	0.08
28	3.5	6	376	12	0	0 í	0	1	31	16	360.00	102.85	6.42	10.26	12.00	0.77
29	5.0	1	376	25	135	0	135	8	454	0	0.00	0.00	0.00	0.00	0.00	0.00
30	2.6	5	805	12	165	45	165	4	124	0	0.00	0.00	0.00	0.00	0.00	0.00
31	2.5	4	376	12	135	0	135	5	188	8	0.00	0.00	0.00	0.00	0.00	0.00
31.1	1.4	6	376	12	180	45	180	6	227	0	0.00	0.00	0.00	0.00	0.00	0.00
32	1,1	3	376	12	166	0	166	5	188	Ó	0.00	0.00	0.00	0.00	0.00	0,00
33	5.6	4	376	25	185	42	185	12	554	0	0.00	0.00	0.00	0.00	0.00	0.00
34_	5.1	2	376	12	165	0	165	13	603	Ō	0.00	0.00	0.00	0.00	0.00	0.00
	2.1	6	376	12	155	35	155	8	454	õ	0.00	0.00	0.00	0.00	0.00	0.00
36	2.6	4	805	12	185	45	185	12	554	Ů	9.00	0.00	0.00	0.00	0.00	0.00
37	6.1	8	376	12	190	55	190	7	351	8	0.00	0.00	0.00	0.00	0.00	0.00
38	4.2	3 -	805	25	165	32	165	8	454	Û	0.00	0.00	0.00	0.00	0.00	0.00
wW	114	v	~~~	20	100		.00	U	191	U	0.00	0.00	0.00	0.00	0.00	V I V V
		AVERA	AGES							15.6		87.44	5.59	9.29	12.28	0.68
	10 2		C TO DATE							1414	4700 00	VI 1 17	0107	· • • • •	12120	v.uu

20.2 TOTALS TO DATE

.

1730.00

RECORD OF AREAS BY RATOON

PLANT	9.8	6.8 %
RATOON 1	26.3	18.2 %
ratoon 2	18.9	13.1 %
RATOON 3	21.0	14.6 %
RATOON 4	22.3	15.5 %
RATOON 5	21.2	14.7 %
RATOON 6	13.8	9.5 %
ratoon 7	4.4	3.0 %
RATOON B	6.1	4.2 %
FALLOW	0.0	0.0%
total area	14	3.8 Ha

FIELDS STILL TO BE TOPORESSED

FIELD NUMBER	AREA IN Ha
5	1.1
6.2	1.9
8.1	11.2
16	2.5
28	3.5
total area	20.2

FIELDS WHICH	HAVE < 100 KG NITROGEN APPLIED
FIELD NUMBER	AREA IN Ka
12.2	2.6
22.1	2.6
27	4.6

3.

AGE IN MONTHS	ACTUAL RAINFALL	AVERAGE RAINFALL	PERCENTAGE
	32	67	47
2	45	162	27
3	81	286	28
4	125		
5		412	30
	. 189	545	34
6	228	661	34
7	352	778	45
8	456	885	51
9	522	974	53
10	540	1024	52
11	547	1062	51
12	555	1107	50
13	. 604	1177	51
14	688	1278	53
15	785	1412	55
16	881	1544	57
17	1034	1684	61
18	1087	1802	60
19	1235	1919	64
20	1284	2027	63

AVERAGE FOR THE GROUP

SUGAR INDUSTRY CENTRAL BOARD ***** MONTHLY ESTIMATE OF CANE CROP

•

Growers Name: DEMONSTRATION FARM Address: P.O. BOX 111, DEMOVILLE, 4444

-

ê

DETAILS OF CANE FIELDS FIRST CANE ESTIMATE

1983/84 Season DEMOVILLE Mi11 Quota No. DM 222

PROGRESSIVE CANE ESTIMATE

FIELD			CANE	AGE	CANE YIELD		HARVESTED Cane to	STILL TO BE	total cane Per field
NG. /MAP	area Ha.	plant Rat/n	VARIETY	cane Months	hetric T/Ha	NETRIC T/FIELD	DATE	HARVESTED ETRIC TONS	SEASON
6.2	1.9	4	N13	17	115	220	180	0	180
16	2.5	4	376	17	115	290	205	0	205
28	3.5	5	376	17	115	400	360	0	360
5	1.1	2	376	16	110	120	85	0	85
8.1	11.2	2	376	16	95	1060	900	0	900
7	1.3	5	376	15	120	160	0	160	140
	4.4	7	376	15	75	330	0	330	330
34	5.1	2	376	13	95	480	0	480	480
3	5.6	2	376	12	95	530	0	530	530
12.1	4.2	5	376	12	90	380	0	380	380
15	3.4	4	376/805	12	90	310	0	310	310
20	6.5	1	376	12	85	550	0	550	550
33	5.6	4	376	12	85	480	0	480	480
36	2.6	4	805	12	95	250	0	250	250
6.1	6.0	4	805	11	65 75	390	0	390	390 350
4 12	4.6	0 5	N11 805	10 10	75 85	350 310	0 0	350 310	310
26	3.6 4.4	1	376	10	85	370	0	370	370
25	1.9	3	N11	9	65 65	120	0 0.	120	120
11	3.4	1	376	8	65	220	0	220	220
22.1	2.6	0	376	8	85	220	0	220	220
24	3.6	2	805	8	90	320	0	320	320
29	5.0	1	376	8	80	400	Ö	400	400
35	2.1	6	376	8	70	150	õ	150	150
38	4.2	3	805	8	60	250	Ö	250	250
<u> </u>	1.5	3	376	7	65	100	ŏ	100	100
12.2	2.6	õ	376	7	95	250	0	250	250
37	6.1	8	376	7	85	520	0	520	520
1	10.5					9530 ⁻	1730	7440	9170
			*******	******		•••••	• • • • • •		
Cane E	Estima	te		М	etric to	ns			
• • • • • •		• • • •	• • • • • • • • • •	• • • • • •				•	:
MILL GROUP BOARD (Signa							ignature)		
MILLER							· · · · · · · · · · · · · · · · · · ·		
Remark	(S.(In	teri	ns of item	s 2 . 14	,2.15 an	d 2.16).			, <i>,</i>
•••••••••••••••••••••••••••••••••••••••									

5.

•

00000711	DATE		A	NUTRIENT		
XILI I H	MALES.	roonarea	េរព		1 PVPL 5	

ield No.	K.Val	P.Val	t/h/n/	K<200	K) 200	count	P<=80	P)80	count	S/H/N	K<200	K)200	
*********	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	**********		******	********	*********	********	*********	*******	*********	********	*******	
210	151	181	4.3	4.3	0	1	0	4.3	0	.36	.36	0	
208	240	96	6.7	0	6.7	0	0	6.7	0	.65	0	.65	
221 101	183	- 90 101	6.8 5 0	· 6.8	0	1	U O	6.8	0	.58	159	0	
	138	181	5.9	5.9	0	1	U	5.9	U	.8	.8	0	
104	249	152	7.4	0	2.4	0	0	7.4	0	.97	Ű	.97	
233	375	42	6.2	0 -	6.2	0	6.2	9	1	.73	0	.73	
111	199	106	5.6	5.6	0	1	0	5.6	0	.57	.57	8	
234	305	56	5.7	0	5.7	0	5.7	0	1	.52	0	.52	
235	312	71	5.8	0	5.8	0	5.8	0	1	.59	0	.59	
226.2	364	88	6.3	0	6.3	0	0	6.3	0	.71	0	.71	
226.1	384	150	5.7	0	5.7	0	0	5.7	0	.7	0	.7	
219	321	78	5.9	0	5.9	0	5.9	0	1	.78	0	.78	
225	273	169	. 6	0	6	0	0	6	0	.66	· 0	.66	
205	425	181	5.7	0	5.7	Ċ	0	5.7	0	.62	0	.62	
242	488	143	7	0	7	0	0	7	Q	.84	0	.84	
64	294	42	5.5	D	5.5	- 0	5.5	0	1	.62	0	.62	
48	560	105	. 5.5	0	5.5	G	, Q	5.5	0	.64	0	.64	
47	430	181	5	0	5	0	0	5	0	.55	0	.55	
	136	167	7.1	7.1	0	1	0	7.1	0	.77	.77	8	
54	221	107	5	0	5	0	.0	5	0	.51	0	.51	
55	294	96	7.4	0	. 7.4	0	0	7.4	0	.75	0	.75	
52	231	120	6.8	0	6.8	0	0	6.8	0	.71	0	.71	
61	253	103	8.1	0	8.1	Q	0	8.1	0	.88.	0	.88	
		· •		23		5	23		5		23		
				19			18				18		
					6.21		 5.82	6.24		 H/N >>>	0.62	0.69	

.

.

•

,

SOUTH AFRICAN SUGAR INDUSTRY AGRONOMISTS' ASSOCIATION

FIELD & RECORDS PROCESSING ON WINDERMERE & SHEPLEY FARMS

bу

Chris Chance

Computer print-out schedules are attached as examples of what is used.

********	******	******	*****	*****	*****	******	******	******	********	******	*****	******	*******	·******	*******	******		FARM
	-JAN	FE8	MAR	- APR	- MAY-	JUNE	JUEY	AUG	SEPT	OCT	- NOV	DEC-	HOUSE	SHED-	DAM	WIND.	SEPT.	AV
YEAR:	146	163	143	121	93	62	56	71	117	128	1 40	132	1078 -	1122	1038		TO APRIL	1895
1957	76	232	144	171	44	31	65	49	202	193	108	119	1431	• • • • • • • • • •				1431
1958 1959 -	185 		38 26	271 20	19	91 	15 - · 42-	32	229 	94 		97	1355 1154			···	1339	1355
1968	59	258	174	288	86	62	29	94	86	75	244	418	1785				1373	1785
1961 1962 -	200 	283 89	111	256	- 60 	204	66	48	120	145	147	103	1733				1672	1733
1963	155	64	182	84 79		<u>1</u> 302		75 17	<u>5</u> 4 24		1-68 1-39	<u>121</u> 125					904 932	-1030 1437
1964	186	133	59	167	31	43	70	43	64	206	117	152	1271	1222			984	1246
1965 1966	52 164	7 8 127		91 88	48 74	1:82 96	13			<u>190</u> 80	<u>tat</u> 117		1100	1032	<u>995</u> - 928		- 881 961	1020
1967	118	172	274	481	29	15	89	49	25	113	128	48	1468	1177	1177		1368	1271
t968 1969	131 81		222 302	46 83	30	59	9		96					1068	1050			1125
1970	113	79	-30∠ 74	83 79	96 117	52 38	22 16	10 50	124 94	186 289	122 242	185 68	1251 1169	1153 1009	1013 936		1962 879	1139 1038
	-185-		177		- 598-	. –		64			57		t 8 97	-1593-	-1467-		- 1213-	1807
1972 1973	86 126	405 182	242 127	99 115	214 47	51 8	45 25	54 215	23 289	86 114	182 242	224 130	1714 1618	1295	1282 1194	1485	1232 1859	1430 1425
1974		154	78	78		48	47		<u>6</u>		205-	92				914		
1975 1976	209 205	200 268	89 587	82	25 78	57	60	56	192	100	128	126	1323	1025	1025	1146	920	1130
	215		1 8 2	140 49	~~~ 41 -	3 	86 42	103 56	96 	179 	130	172 r1 5	1967 —1472	1648 	1557 	1735 1133	1666	1727
1978	289	109	205	187	35	58	97	89	119	268	138	88	1674	1269	1215	1364	1346	1381
1979 - 1980	175	26	101	48	138 35		58 to	42	126 		86 127	149 1 09	1143 963	931 887-	950 737	956 745		995
1981	139	370	71	124	225	98	36	94	136	67	95	76	1532	1405	1939	1542	1217	1377
1982 1983	129	144	181	36	115	4		25 175-	112	113	97	76	1050	834	826	919	863	907
1,00	37	01	00	J0	41	3/	- 08	- 175-	- 31				645	934	523-		665	701
		<u> </u>							•									
						· ·····												
											• • • • • • • • • • • • • • • • • • • •		· · · ·					
						··· ·····			·						<u> </u>			
									_	•= ···					<u> </u>			
~ ~ 				/		····		• -										

	00UCTION **********	1983/84	SEASON		JINDERMERE	******	****	********	*******	*****	DATE: 1	17/10/83
FIELD NO.TO	TAL AREA	AREA CUT	VARIETY	RATOON	DATE CUT	AGE	TONS	SEED	TONS/HA	TON/HA/M	UNITS TO	DNS/UNIT
WINDERMERE					date & ferro	0				· · · · · · · · · · · · · · · · · · ·		
*********	1.1	8	N12	8		₹- · · ·			8.88	8.89	8	8.88
182	5.2	9	376	2					8.09	0.00	0	0.09
201 202		8.4 Ø	376 376		1/10		798.25	25	98.01	7.54	110	7.26
301	5.6	9	3/6 N13	6 2					0.00 8.00	0.00 0.00	8	0.00 0.00
302	6.6	ø	376	2-					0.00	0.00	ø	0.00
303	3.1	9	376	2					0.00	0.09	8	0.00
304	2.4		376	1	4/7	13	185.45		0.00	0.00	0	0.09
402	3.4	2.4	376	2	6/7	13	228.35	. 48	92.73	7.13	28 33	6.62 6.68
501	7.2	7.2	376	2		13	698.52		97.82	7.46		7.86
592 593	4.3		376	2					0.90	9.99	0	9.09
504	8.1	9	376 376	2					8.00 0.00	8.89 8.80	0 0	0.00 0.09
381	8.8	ğ	376	i-					0.80	9.80	<u> </u>	0.00
602	6.6	0	376	1		·			8.00	0.00	9	9.99
	2.4	3.7	376	3	1073		385.35		0.00	0.80		
800	9.4		N14	2	10/0	16	383.33	·	104.15	6.51 8.88	51 9	6.32
801	8.7	9	376	5					0.00	0.00	0	0.00
802 903		g -	376	1					0.00	9.00	. 0	0.00
804	2.4	9 8	376 376	2					9.00 9.00	0.00 0.00	0 0	9.00 9.00
	5.9	· g		·····	· · · · · · · · · · · · · · ·		·			0.00		9.89
901	7.4	6	376	2	28/4	17	625.28		104.21	6.13	98	6.38
	<u> </u>		376 NI 2	<u>1</u>				• • • • • • • • • • • • • • •		8.09		0.00
984	6.2	9	N12	8					0.00	0.00	8	0.00 0.00
905	1.8		376	3			_		0.00	0.00		0.00
AVERAGE	142.8	29,7	****	2		14.17	2913.2	73	100.55	6.92	429	6.79
% CUT: %-LEFT:		20.80								<u>.</u>	· · · · · · · · · · · · · · · · · · ·	
4 LEFI:		79.28										
									··· =			
	•											
			• • • •									
											•	
						,		_				

۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰

DIESEL	AND *******			CONTROL	******	MONTH:		
DIESEL								···· ·
DAY		01-07	08-14	15=21	22-28.	29=31_	TOTAL	<i></i>
N0.1		40.4					275.8	
4800_ LT/HR	HRS	3.26		4.15				
N0.2	LT.	15	. 52.9	26.8	41.2		135.9	
		. 5	16.7	5.4 4.96	9.2		36.3	
LT/HR		3.00	3.17	4.96	4.48	0.00	3.74	
	LT.	16.4		21.2			126.4	
	HRS.	5.2					40.9	
				······				
NO:4		0			•		.0	
LT/HR.	HRS.	0 0.00	0.00	0.00	0.00	0.00	0.80	
N0.5!	LT,	152.4	.139		138.7			
	HRS.	30	25	12			93.5	
LT/HR.		5.08	5.56	5.67	5.23	0.00	5.33	
N0.6!		112.4					308.9	
4100! LT/HR.	HRS.	26.6					85.3	
<u> </u>					3.20	00_	3.62_	
	LT.						98	
4600! LT/HR.	HRS.	<u> </u>	<u>11.1</u> 4.36		0.00	0.00	<u>21.1_</u> 4.64	
N0.8!	LT.			35.9	12.2	***	48.1	
354!	HRS.			16.6			21.7	
LT/HR.	·	0.00	0.00	2.16	2.39	0.00	2.22	
N0.9!				22.6			106.4	<u></u>
COUNTY! LT/HR.	HRS.	8.00_	8 10.48	3 7, <u>53</u> _		0.08	11 9.67	
						0,00		
OTHER !	LT.		151	231.2	10.2		418.4	
	LT.	100.8	195.1	263.5	211.5	• · •	770.9	
ISUZU! LT/KM.	КМ.	731.3		1116.5			3828.9	
STOCK	BAL B/F	250 4000	3737	2913.5	2117.6	1463.1	1463.1	
WEEKLY	USAGE	513	823.5	795.9	654.5	8	2786.9	· ·
	BALANCE	3737	2913.5	2117.6	1463.1	1463.1	1463.1	

:

FIELU	USAGE ********	AND	STOCK	CONTROL	FOR S	SHEPLEY	AND		WIN	DERMERE	****	DATE: 30/	/09/83	
*********	*********	2008 2008	********	**********	:关关计关于关计关键 丁1:1750	*******	******	********	*********	******	******	******	****	
FIELD NO.	AREA	1.0.1	3.1.5	CA.N.	2.3.4.		/DOPAX "	LT/HAKG	VELPAR GR	AMS/HA I	NEMA G/TEMIKLT/V	TICIDE YDATE	ZHA GRA	MURON
WINDERMERE												***		

181	1.1	12				545		9.00		0			8	5
102	5.2					0 0		0.00					9	
202	4.2					9 9		0.00		0				
391	6.6			39		295		0.00 8.00		8			8	-
382	6.3			48		303		0.00		0	······		8	
303 304	3.6	10		19		403	28	5.56		0			8	
401	2.4		·····					8.98		0			8	
402	3.4	26				425 382		0.00 0.00	1 1.75	580 515			8	
501	7.2					332		0.00 9.00	1.73	0 			6 Q	
W.J.F.C.			· ·	······						۳			U	·
*****								· ·						
101	3.1					0		0.00		9			8	
102	3.9	·						0.00		9			e	
184	8.7							0.00		0			9	
105	1.8					9		0.99 0.99		9 0			0	
201	8.9			-		e		0.00°						
301 302	8.i					8		0.00		. 0			9	
302	4.5	35				389		0.00	2	444			9	
SHEPLEY			· · · ·											

603	4.3					8		0.00		8			0	
	3.2			• • • • • • • •		9	• • • • • • • •	9.00					0	
702	1.6				32	500	24	7.50		0	86.25		27	
783			• ·					8.00 8.00		··· 0··			····· <u> </u>	
704	8.5					ē		0.00		8			9	
705	3.9				23	295	24	6.15		9	52.5		13	
783	3.4	18	-	24		353		0.00					9	
891	5.9	10		30		400 0		0.00		9			0	
	271	23		•			15	0.00					B	
910	1.8					8	- •	0.00		9			8	
803 804	5.1					<u> </u>		0.00		8		·	0	
TOUNLANDS	40	148	60			0 250				0			9	
GERBERA	1.1	- • •	40			230		8.00 8.00		8			9 A	
STOCK			• • • • • • • •			·· ···································	•					· <u></u>		
STOCK														
	т этоскт т	- 212	8	~ 31 <i>6</i>	573		-40		34.25					ź
SEASON PUI	RCHASES	409	800	490	0		220		34.25		95 720	15		4
BALANCE	IN HAND	 74 ·		180										
		2===2== == :	- 20		4/2 =========				32.75		500	15		ទ

. . . .

MONTH:	SEPTEMBER	1983		WAGES		SHEPLEY	AND		WINDERME	RE
{**********	*********	*******		*****		******	********	*********	******	**.
NAME	DAYS	RATE	WAGES	TICKETS	ADVANCES	ADVANCES	TOTAL	ADVANCES	PAID	ADVANCES
	DORKED		EARNED	DOCTOR	CASH	B/F	DEDUCTIONS	WORKED OFF		C/F
SAMUEL	12	5.70	68.40	3.00			3.00	3.00	65.40	0.00
ABELL	30		135.00	2.00		47.00		51.00	114.00	0.00
VICTOR	30.	5.50	165.00		120.00		120.00	120.00	45.00	0.00
MKHONJWA	30	5.45	163.50	7.00	50.00		57.00	57.00	106.50	0.00
MSUSWA-	26	5.90	153.40	4.90	60.00		54.00	64.00	89.40	0.00
SPONONO	25	5.90	147.50	7.00	164.71		171.71	100.00	47.50	71.71
BOKINKOSI	25	5.50	137.50				0.00	0.90	137.50	0.00
JOHAN-	30	5.50	165.00	30.00			30.00		135.00	0.00
JOSEPH	30	5.50	165.00				0.00	0.00	165.00	0.00
LUKA	30	4.50	135.00	6.00			6.00	3.00	129.00	0.00
MISHACK-		5.50	0.00		<i>*</i> .*	367.60	367.60		0.00	367.30
JOSIA	30	3.20	96.00	28.00			28.00	28.00	68.00	0.00
PATRICK	16	6.75	108.00	10.00	150.00		160.00	108.00	0.00	52.00

•

.

.

•

•

.

		CASH	FLOW	FOR	1983/4	SEASON			***	DATE	
MONTH	" MAY	JUNE	JULY '	AUGUST	SEPT	007	1100	DEC	JAN	FEB	
INCOME											
######### CANE											
CITRUS											
EQUILISAT										••	
RET.INT											
VEGETABLE RENT											
TOTAL	а		a	B	 A	6		e			·

EXPENDITURE BENERAL

GENERAL	 		· · · · · · · · · · · · · · · · · · ·	
		·		
ELECTRICI				
FERTILIZE	-			· · · · · · · · · · · · · · · · · · ·
DRAINAGE				8
FUEL/LUB				8
LABOUR EX				
RAILAGE				8
				Â
RATIONS				•
MAINTENAN				and a second of the second
BUILD.	 -			0
RIG.				0
VEH.				
-TRAILERS				
- IMPLEMEN				B

;

MAR APR TOTAL 198273 -

-

0 0 0

8

-

0 0 0

.

0

- IMPLEMEN -WORKSHOF -TRACTORS WAGES 8 0 0 - ---TOTAL 8 6 6 6 6 6 6 6 6 0 8 ------CITRUS-.

FERTILIZE INSECTICI ORCH.EXP PACK.MAT.							······································						8 9 8 8	
TÓTAL	8	8	8	0	0	0	0	8	0	6	θ	6	8	8
													8	
CANE													9	I
FERTILIZE HERBICIDE LEVIES			• •						••• • •			· · · · · · · · · · · · · · · · · · ·	0 0 0 0 0	

TOTAL	9	0	9	ĥ	9	8	9	9	.0	8	0.0	9	
VEGETABLE												47i -	
	-					·· -		···.			, 	e 9	
PACK .MAT .		R										8	
												6 6	
ADMIN.	• ••••					•	••·	• •		• •• ··•	· ·= ·· <u>·</u> ·····		

ACCOUNTAN													. R	
- BANK CHGS	•							· · ·		·· · · ·	· -		- Å	
0/0 INT.													Å	
BOND INT.													ě	
TINSURANCE		•••••••••••••••••••••••••••••••••••••••			•	*** *** ****								
LICENCES													e	
LEVIES													8	
MEDICAL							** • • •	·· ··· ·		······			8	
STATIONAR													0	
RAILAGE													9	
SALARIES		• • • • •					· · ·							
SUBS.	•													
TELEPHONE													9	
WK/COMPEN *		•					-							
				•••••										
TOTAL	0	. 10		9	6	0	8	8	8	3	9	9	8	9
GRAND TOT														
INCOME		a	•											
EXPENDITU"		9	8	6	8	8	8	8	8	9	9	9	8	Ð
			9	8	8	9	.6	9	9	9		0	9	0.000
TOTAL	8	A	4		 a									
				9		6	6	4	-9	8	9	•	9	9

0

Ø

.....

..... 0 9

.

SOUTH AFRICAN SUGAR INDUSTRY

AGRONOMISTS' ASSOCIATION

INTERPRETING FIELD RECORDS - M.G. Murdoch

This note concerns the interpretation of the analyses of field records with a view to determining cause and effect relationships.

In general, there are two sources or types of information that are used to establish relationships:

- data obtained from experiments
- observations collected in the form of surveys

The contrast between these two types of information is as follows:

EXPERIMENTS

An experiment is carried out to "manufacture" information. If it is properly designed and conducted then a cause and effect relation will be assured.

Judgement, however, may be needed in deciding to which conditions in the real world the results will be applicable.

SURVEYS

With surveys information that already exists is collected. Associations between the various factors may be demonstrated, but there is no guarantee that these represent cause and effect.

FIELD RECORDS

Field records are survey type information. Careful judgement is needed in interpreting any of the associations found as representing cause and effect.

It would be incorrect to regard the collection of large amounts of field records information as the equivalent of a "grand experiment".

In commercial situations decisions on what variety to plant in a field, at what age to harvest, when to replant, whether to burn or trash a field, etc., etc., are made to suit particular conditions and are not done at random.

COMBINING/

COMBINING SETS OF RECORDS

Yields from one season to the next and from one farm to another can vary considerably.

When combining data, care must be taken to avoid confounding the effects of other factors with differences between seasons or farms.

For example, a comparison between varieties A and B would be affected if a higher proportion of fields of variety B was harvested in, say, a low yield season.

SOUTH AFRICAN SUGAR INDUSTRY AGRONOMISTS' ASSOCIATION

RESPONSES TO NITROGEN FOR RATOON CANE GROWN IN VARIOUS SWAZILAND SOILS

by NB Leibbrandt

1. Introduction

A programme of nutritional trials was initiated between 1980 and 1983 in Swaziland with one of the objectives being to determine optimum N rates for ratoon NCo 376 grown in the most predominant soils of the lowveld. The question on whether present FAS nitrogen recommendations are applicable or not to this region of widely varying soil forms needs investigation. Hopefully results obtained after a number of seasons will enable a more precise nitrogen recommendation to be made for the soils involved.

2. The soils

The soils being tested range from light grey sandy alluvium to heavy black clays and vary in depth (Table I) nutritional values and yield potential. These soils are mainly derived from Swazi basic rocks, basalts, alluvium and Middle Ecca sandstones and shales and represent those most commonly found in the Swaziland sugar industry.

Soil form	Clay %	Depth (cm)
Dundee	20	>100
Estcourt	20	60
Bonheïm (light)	33	100
Tambankulu	37	60
Shortlands	40	60
Мауо	40	55
Bonheim (heavy)	52	80
Arcadia	52	70

TABLE I SOILS

3. Responses to nitrogen

Rates of nitrogen applied to each soil ranged from nil to 240 kg N/ha with 40 kg N/ha intervals. Applications were made by hand and were split on soils with <30% clay and on sites that were harvested before August. The nitrogen carrier used in these trials was either Urea (46 % N) or ammonium nitrate (34,5 % N).

Table II shows the yield response of each soil to the low level of nitrogen (80 kg N/ha) with the greatest being on the Tambankulu, Estcourt and Arcadia soil forms. The Shortlands form responded to a far lesser

degree to applied N due to its higher nitrogen mineralization potential. Poor drainage and waterlogged conditions that are common in the heavy clay soils were responsible for poor N utilization in the Bonheim soil forms.

Soil form	kg	kg N/ha		ase
5011 TOPIN	Nil	80	tc/ha	%
Tambankulu	82	114	32	39
Estcourt	55	75	20	36
Arcadia	92	124	32	35
Dundee	84	104	20	24
Mayo	82	100	18	22
Bonheim (heavy)	78	88	10	13 .
Shortlands	142	150	ġ.	6
Bonheim (light)	75	79	4	5

Table II Yield responses to 80 kg nitrogen/ha

Results have indicated that the requirements of nitrogen for optimum yields differ markedly between these soils (Table III) with some responding best to low levels of N while others produced peak yields at far higher rates.

Soil form	1st crop	2nd crop	Mean response tc/ha
Shortlands	80	-	+ 9
Mayo	80	120	+ 29
Bonheim (light)	-	160	+ 14
Bonheim (heavy)	120	160	+ 25
Estcourt	140	180	+ 30
Arcadia	160	160	+ 48
Dundee	200	-	+ 34
Tambankulu	· 240	200	+ 66

Table III Optimum N levels (kg/ha)

From these results it is possible to group the soils according to their nitrogen requirements:

A. Those soils that require minimal amounts of N for optimum yields ie. the red to dark brown free draining aggregated soils of the Shortlands and Mayo forms (80 - 120 kg N/ha). These soils are capable of mineralizing substantial amounts of nitrogen and care should be taken not to over apply the nutrient.

- B. The soils that produce optimum yields at the intermediate levels of nitrogen (120-180 kg N/ha) ie. the dark brown to black clays of the Bonheim and Arcadia forms, and the duplex soils represented by the Estcourt form. The responses on these soils to applied N varies according to soil conditions and poor N utilization can be expected with inadequate drainage.
- C. Those soils that require high rates of nitrogen (200-240 kg N/ha) for optimum yields ie. the grey alluvial Dundee form soil and the dark grey/ brown Tambankulu form soil.

4. Conclusion

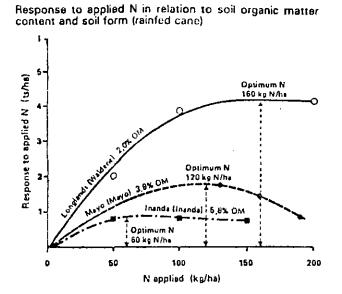
The nitrogen response curves for the soil forms selected for investigation have shown sufficient evidence that the soil should be considered when assessing the amount of nitrogen to be applied for optimum yields.

NBL/PMO 11.10.83 ŧ

SOUTH AFRICAN SUGAR INDUSTRY AGRONOMISTS' ASSOCIATION

N RECOMMENDATIONS BASED ON SOIL TYPE

by RA Wood and JH Meyer


- Effective utilization of N by the cane grower depends on a basic understanding of the transformations which N undergoes in the soil. It is important to realise that soil type can greatly influence the response of cane to fertilizer N, not only in the plant crop but also in the subsequent ratoons.
- Sugarbelt soils vary significantly in their capacity to release N mineralization. This is the process by which the N in organic matter is converted into inorganic N as a result of microbial decomposition.
- The three main steps in N mineralization are shown below.

1.	ORGANIC N (organic matter)	Ammonification by Soil micro-organisms >	AMMONIUM N(NH4 ⁺)
2.	AMMONIUM N(NH4 ⁺)	Oxidation by Witrosomonas >	NITRITE N(NO ₂ -)
3.	NITRITE N(NO2-)	Oxidation by Nitrobacter	NITRATE N(NO ₃ -)

(Steps 2 and 3 are referred to as NITRIFICATION) MINERAL NITROGEN = AMMONIUM N + NITRATE N

- Following incubation for two weeks in the laboratory the quantities of mineral N released by sugarbelt soils derived from various parent materials ranged from 30 ppm in the sandy TMS soils to 111 ppm in highly fertile alluvial soils (ie 68-250 kg N/ha equivalent).
- Until recently N recommendations for plant cane took these differences in mineralizing capacity of the soil into account only to the extent that 90 kg N/ha was recommended for all soils except those derived from Dwyka tillite and sandy TMS, where 125 kg N/ha was recommended.
- For ratoon cane estimated cane yield was used as the main criterion for advisory purposes (1,25 kg N/ton expected cane yield per hectare) and variable release of N from different soils was largely ignored.
- Additional fertilizer trials have therefore been conducted to establish more accurately the average amount of N required by the cane crop to supplement that not met by each of the major soil types. These trials have confirmed that the N requirement for ratoon cane is substantially higher on the poorly drained, low organic matter soils of the Longlands and Kroonstad forms (140-180)

kg N/ha) than on the heavier, humic well drained Inanda form soils (50-80 kg N/ha). On many soils (Shortlands, Mayo, Bonheim and Arcadia forms) the N requirement falls between these two extremes (110-140 kg N/ha) as shown in the graph below:

- The results of the fertilizer trials together with additional laboratory data have shown that the N requirement of both ratoon and plant cane can be more reliably estimated from a knowledge of soil form and organic matter content of the soil. Soils with low (<2%), moderate (2 to 4%) and high (>4%) organic matter contents have been associated with average relative responses of about 50%, 23% and 10% to applied N respectively.
- The new system that is being used for recommending N for plant and ratoon cane according to diagnostic horizon, parent material, associated soil form and organic matter is shown in the table below:

- · · ·	Soil Main Organic N mineral	Estimated	Parent		N rec	commendations			
Soil group		capacity	Parent material	Soil form	Plant (kg/ha)	Ratoon (kg N/t cane)			
				Recent Sand	Fernwood		1,6:1 (c g 160 kg N /100 t)		
				TMS (ordinary)	Cartref				
ı	Orthic (weak)	Low <2	Low <70	Dwyka tillite	Longlands Glenrosa	120			
				Granite	Glenrosa				
				Alluvium	Katspruit				
		ic Medium Medium		Lower Ecca shale	Milkwood		1,25:1 (e g 125 kg N /100 1)		
				Middle Ecca sedt.	Swartland				
	Melanic			Granite	Мауо				
n	Vertic Orthic		Medium 70-140		Shortlands	90			
	(gocd)				Arcadia				
				Alluvium	Hution				
	·			TMS (ordinary)	Hutton				
						Dolerite	Hutton		
					Inanda				
Humic III Onbic	High High .	TMS (mist)	Inanda	60	0,8:1 (e g 80 kg N				
	(Humic phase) >4	>4	>140		Nomanci		(eg 80 kg N /100 t)		
				Middle Ecca	Clovelly				
				Dwyka tillite	Griffin				

- This system will help to rationalise the use of N fertilizer ensuring increased application on the poorer less fertile soils (eg many grey soils of the Cartref, Kroonstad and Longlands forms). Equally there will be a reduction in the rates of N fertilizer applied to soils with a good N mineralizing capacity and high organic matter content.
- For advisory purposes we are now planning to categorise soils into three or four classes based on the nature of the diagnostic topsoil horizon, soil form, structure and organic matter content. This will be determined by a visual examination of each soil sample as it is received in the FAS laboratory.
- Properties such as colour, structure, texture and consistency will be used to estimate whether a soil has a low, moderate or high N mineralizing capacity. The requirements for each class is given in Table 2.
- Class I soils comprise mainly grey non-structured sands to loamy sands which may be associated with mottling and nodules of ironstone (plinthite). Diagnostic horizons that are equivalent to this class are grey orthic A (light), E, soft to hard plinthite and gleycutanic B horizons.
- Class II soils are generally heavier textured, red to dark grey and black in colour and may show moderate to strong blocky structure. Diagnostic horizons that fall into this category include dark grey orthic loams, red orthic sands to loams, red structured B clays, melanic A and vertic A clays. Unfortunately this class covers a wide range of soil material and the merits of dividing this class into two sub-divisions is presently under consideration.
- Class III soils occur mainly in the Natal Midlands (Nottingham soil system, >300 m in altitude) and are characterised by their dark brown colour and light, fluffy nature (rich in humus). This class includes humic A and brown orthic A (humic phase) topsoils.
- Information on the parent material of a field as supplied by some growers on the soil label may also be helpful in rating the soil into its appropriate class. The various parent materials associated with each class is shown in Table 2.
- In time, once all farms have been mapped on a soil form basis, it is hoped that N recommendations will be based solely on soil form. The system envisaged is shown in Table 3.

RAW/JHM/HDN 7/10/83

	Soil N mineralization class					
Detail	Low I	Moderate II	High III			
Colour	Grey with mottling	Red to black	Dark brown			
Texture	Usually below 15% clay.	Usually above 15% clay*	Usually above 25% clay			
Structure	Nil - May cap	Moderate to strong*	Fine granular non-structured			
Organic matter	<2%	2 - 4%*	4%			
Drainage	Usually restricted*	Usually free draining	Free draining			
Plant (kg/ha)	120	90	60			
Ratoon (kg N/tc)	1,6:1	1,25:1	0,8:1			
From label	Grey Recent Sands Pre-Granite Quartzite Alluvium (light) Granite (light) Dwyka Tillite Middle Ecca Sandstone TMS (ordinary)	Red Recent Sands Granite (heavy) Lower Ecca Shale Middle Ecca Shale Alluvium (heavy) Tugela Schist Dolerite	TMS (mistbelt) Dolerite (humic)			

Table 2: GUIDE FOR ESTIMATING NITROGEN REQUIREMENT BASED ON SOIL PROPERTIES

* excludes Recent Sands

Table 3: TENTATIVE GUIDE FOR ESTIMATING NITROGEN REQUIREMENT OF RAINFED CANE ACCORDING TO SOIL FORM

		SOIL MINE	ALIZATION POTENTIAL	
LO	LOW		HIGH	VERY HIGH IV
FERNW CART LONGL WESTL KROON KATSP GLENROSA ESTCO STERKS	REF ANDS EIGH STAD RUIT (LIGHT) URT	GLENROSA (HEA) CLOVELLY (LIGH HUTTON (LIGH OAKLEAF SWARTLAND BONHEIM VALSRIVIER TAMBANKULU WILLOWBROOK RENSBURG	T) MAYO	CHAMPAGNE INANDA NOMANCI KRANSKOP MAGWA HUTTON (HUMIC PHASE) CLOVELLY (HUMIC PHASE) GRIFFIN (HUMIC PHASE)
N REQUIREMENT (kg/ha) PLANT RATOON*		100 140 - 120	80 120 - 100	60 100 - 90

* The highest rate in each range applies to cane grown in deep and/or where supplementary irrigation is practised.

SOUTH AFRICAN SUGAR INDUSTRY AGRONOMISTS' ASSOCIATION

PRETRASHING FOR ELDANA CONTROL AND THE EFFECT OF N ON THE INCIDENCE OF ELDANA

by JG Lewis

Pretrashing for eldana control

Pretrashing trials were started in 1979 as the result of the observation in an insectary trial that eldana moths laid a large proportion of their eggs out of sight among dry cane leaves in preference to other plant material which was offered to them. Five small plot trials were laid down and results were encouraging when there was an average decrease in eldana numbers of 39%. Yield appeared to be marginally reduced in some cases as a result of pretrashing. The one instance where yield was increased was in droughted cane.

A further six non-replicated trials were surveyed approximately two months after treatment and, in pretrashed plots, showed a reduction of 66% in eldana numbers per 100 stalks and 9% stalks bored.

A subsequent series included 43 non-replicated observation trials, thoroughness of pretrashing trials and frequency trials.

Thoroughness trials

Four replicated trials in which trash was removed in three different ways were conducted. The treatments were

- 1. guick and superficial
- 2. full or very thorough
- 3. an extra full or very thorough stripping with trash moved away from the rows.

Whilst full, and extra full pretrashing were marginally better than a quick pretrashing, there was little to be gained from doing other than a quick pretrashing.

Table 1: Mean results of four trials to test thoroughness of pretrashing

Treatment	Eldana per 100 stalks	% stalks bored	ers g/stalk
Control	60	81	49
Quick pretrash	40	74	50
Full pretrash Full pretrash and	35	75	47
removed from rows	36	73	50

Frequency trials

Cane was pretrashed once, twice or three times in one trial, and once or twice in four other trials. Numbers of eldana were shown to decrease with a second pretrashing, but the reductions over the five trials suggested there was no practical value to be gained from more than one operation.

Observation trials

Results of 43 non-replicated trials surveyed four months after treatment showed that, for all levels of infestation, pretrashing had on average kept eldana numbers 34% below those of control plots. The pretrashing also resulted in an overall yield saving of 6%.

Results were also grouped into three categories:

- 1. trials having control plots with 40 or more eldana/100 stalks
- 2. trials having control plots with 25-39 eldana/100 stalks
- 3. trials having control plots with 0-24 eldana/100 stalks.

Table 2: Effects of pretrashing at different levels of eldana

Treatment	E/100	% stalks	Ers	Ers				
	stalks	bored	g/stalk	% cane				
40 an	40 and over E/100 stalks - 16 trials							
Control	67	86	40	7,3				
Pretrashed	42	82	44	7,7				
Difference	-37%	- 5%	+ 8%	+6,5				
25	to 39 E/10	00 stalks -	12 trials	I,				
Control	31	73	45	8,8				
Pretrashed	21	64	44	8,7				
Difference	-32%	-12%	-2,4%	-1,3				
0 to	0 to 24 E/100 stalks - 15 trials							
Control	13	48	68	11,8				
Pretrashed	10	48	74	12,0				
Difference	-23%	0%	+ 9%	+ 2,5				

These results indicated that the greater the number of eldana, the greater was the reduction in eldana numbers. Yield results did not relate clearly to eldana numbers nor to damage levels; but yield savings were indicated for the group having 40 and more eldana/100 stalks.

It should be noted that all yield results for the above trials were based on sub-samples taken from the plots. No trials were harvested for cane yield.

Variety trials

Entomology have been pretrashing sub-plots of Agronomy variety trials to see if varieties are affected differently by pretrashing. So far five trials have been treated but no trends have been detected.

Another useful aspect is that Agronomy trials are weighed at harvest, so more reliable results can be obtained for the effect of pretrashing on yield.

Yields

In 1974 in one eldana-free Agronomy variety trial, it was found that pretrashing significantly reduced ers % cane and it is possible that yields of recoverable sugar might be reduced as a result of pretrashing.

Three harvestings of one Agronomy variety trial, RVT(CZ)3/80, gave increased overall yields as a result of pretrashing. The same trend was usually followed for the individual varieties within the trials. The trials in all three cases were very heavily damaged and infested with eldana. One trial in which eldana numbers and damage were low, showed a decreased yield. The last trial with heavy eldana damage (74% stalks damaged) in the control plots, but low eldana numbers, showed no yield differences.

Trial/	Age	Treatment	Ers %	Cane	Ers	%	E/100
date	(months)		cane	t/ha	t/ha	SD*	stalks
RVT(CZ)1/77	13,6	Control	11,1	66	7,3	74	9,9
11/11/81		Pretrashed	11,4	64	7,3	69	6,7
RVT(CN)1/77	16,4	Control	12,6	40	5,0	18	5,3
13/10/82		Pretrashed	12,0	40	4,7	16	2,7
RVT(CZ)3/80	13,6	Control	9,2	83	7,6	93	65,4
10/12/81		Pretrashed	9,8	86	8,4	86	39,9
RVT(CZ3/80	15,8	Control	5,0	75	3,8	99	53,2
16/2/82		Pretrashed	7,0	80	5,6	97	34,3
RVT(CZ)3/80	15,0	Control	7,9	52	4,2	98	99
17/5/83		Pretrashed	8,9	62	5,5	86	41

Table 3: Mean yield and eldana details from five Agronomy variety trials

* stalks damaged

The results of the above variety and observation trials suggest that at high infestation levels, the yield savings due to reduced eldana more than offset the cost of pretrashing.

Agronomic and other factors

Agronomic aspects of pretrashing are very closely linked to yield.

Not all areas are suitable for pretrashing and therefore there is no suggestion that all fields should be pretrashed.

Pretrashing provides a trash blanket for about four months before harvest, which in these dry times could be an advantage, as was demonstrated in a pretrashed variety trial which was recently harvested and which had previously been burnt. It was felt that the higher yields from pretrashed treatments may not have been due to eldana reduction alone. The cane had not canopied and the trash blanket may have conserved moisture from the occasional rainfall.

One criticism has been that pretrashing has, in some instances, been followed by poor ratooning. Perhaps one should not pretrash where burning is normally considered advisable at harvest.

Some advantages of pretrashing which mostly apply to normal trashing at harvest are:

- 1. Conservation of soil moisture.
- 2. Weed control. This could also apply later in the crop if the cane has not canopied properly.
- 3. More efficient cane cutting. Cutting pretrashed cane is easier than cutting unburnt cane. This will reduce harvesting costs.

Another possible advantage in pretrashing cane is that cut stalks are not so likely to be buried under the trash as may occur in normal green cane harvesting. However care must be taken to ensure that stalks are not cut too high above ground level.

Costs

It seems that for medium sized cane about 500 metres of cane row is the amount that can be pretrashed by one labourer in a day. If the cane is taller, the labourer is able to pretash about 450 metres/man/day and for short cane the task is about 550 metres/man/day.

The cost will vary depending upon row width. For example, there are 8 333 metres of cane in one hectare when the row width is 1,2 metres, and 7 143 metres at a row width of 1,4 metres.

For pretrashing, female labourers seem to be preferred and a quick pretrashing operation is adequate.

The cost is approximately R50/ha. One grower calculated that it cost him R90/ha to pretrash a field, but he had his labourers doing an unnecessarily thorough job.

Effect of N on the incidence of eldana

It has been known for many years that higher levels of nitrogen fertilizer can produce higher levels of pests in the host crop. Following the first evidence of this effect in an Agronomy variety trial in 1975, eleven trials involving different rates of application of nitrogen have been surveyed for eldana since 1979. Nine of these trials have shown a positive relationship between increasing rates of nitrogen and increasing levels of eldana. A summary of the results obtained from these trials is given below.

Trials E/Eld/78/P1 and P2

These two trials, which were the first to be laid down to test eldana and nitrogen, had rates of nitrogen application from 0 to 300 kg/ha. Both trials showed increasing levels of damage and eldana numbers with increasing rates of nitrogen. Trial P2 had higher numbers of eldana and a more rapid increase in eldana numbers.

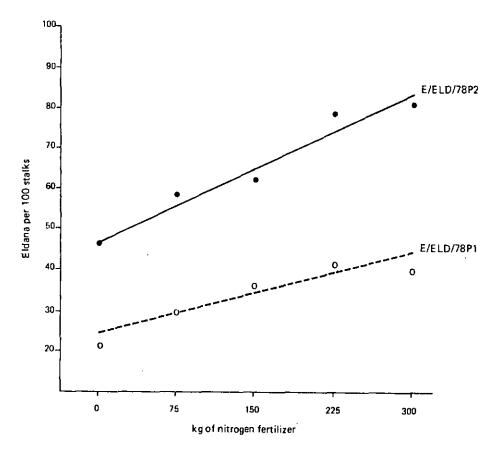


Figure 1: Eldana per 100 stalks and nitrogen fertilizer for trials E/Eld/78P1 and E/Eld/78P2

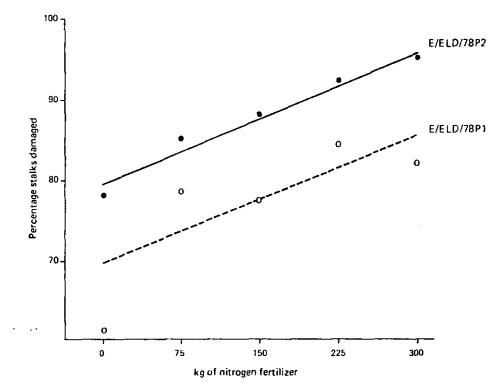


Figure 2: Stalks damaged and nitrogen fertilizer for trials E/Eld/78P1 and E/Eld/78P2

Trials Eld/N1/80, Eld/N2/80 and Eld/N3/80

These three trials were laid down, each on a different soil type, as a follow-up to the above two trials. Again nitrogen was applied at rates from 0 to 300 kg/ha. One trial showed increasing numbers of eldana and levels of damage with increasing rates of nitrogen. Another of the trials showed only a marginal response. In the last of this series of trials, eldana numbers fluctuated erratically over the range of nitrogen applications. However there was some indication of increase in damage with increasing amounts of nitrogen. The soil type is known to influence the shape of the nitrogen response curve.

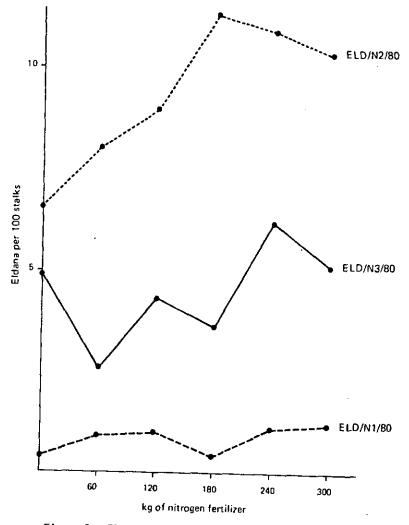


Figure 3: Eldana per 100 stalks and nitrogen fertilizer for trials Eld/N1/80, Eld/N2/80 and Eld/N3/80

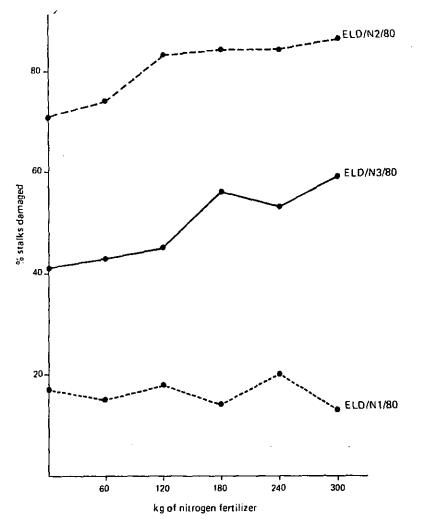


Figure 4: Stalks damaged and mitrogen fertilizer for trials Eld/N1/80, Eld/N2/80 and Eld/N3/80

Trials FT15N/78 and FT16N/79

These are two Agronomy nitrogen trials which were assessed for eldana infestation by Entomology this year. The highest rate of nitrogen applied was 200 kg/ha. Again, both trials showed increasing levels of damage and eldana numbers with increasing rates of nitrogen.

7.

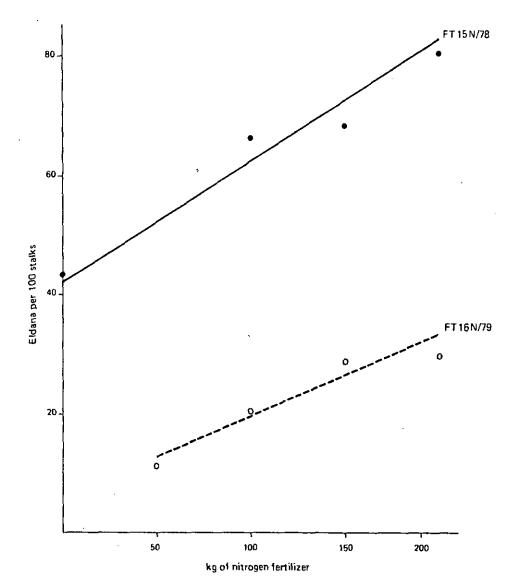


Figure 5: Eldama per 100 stalks and mitrogen fertilizer for trials FT15N/78 and FT16N/79

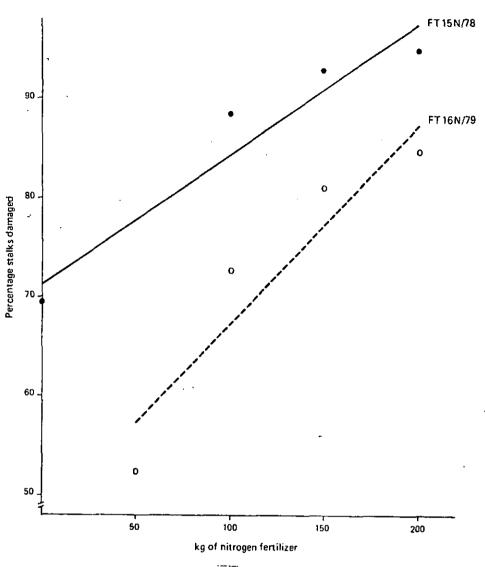


Figure 6: Stalks damaged and nitrogen fertilizer for trials FT15N/78 and FT16N/79

Discussion

There are three aspects that need to be mentioned.

- 1. The economic interest. Do the increased levels of eldana and damage due to higher amounts of applied nitrogen decrease the yield more than the expected yield increase due to higher levels of N? The level of eldana present is also important. If very low levels of eldana are present, then crop loss should be minimal. However if very high levels of eldana are present, then the loss due to higher applications of nitrogen could be significant.
- 2. The threat of further re-infestation. Does an increased level of eldana due to high levels of applied nitrogen constitute a threat to surrounding cane? It may be that a higher output of moths only marginally affects the general eldana population which is governed by other more important factors.

9.

3. The results of the survey of more than 1 500 commercial fields affected by eldana did not show any consistent relationship between numbers of eldana and amount of N fertilizer applied per hectare.

JGL/HDN 18/10/83