

Soil Organic Matter and its Management

Alan Manson

SASIAA Symposium SASRI, 24 October 2018

Soil Organic Matter

- Many forms of SOM
 - Living
 - Recently dead (easily decomposed)
 - Very dead (difficult to decompose)
 - Black C (charcoal)

Soil Organic Matter

Where is the SOM & what does it look like?

Flickr.com: Life on a Grain of Sand

Extracellular polymeric substances (EPS)

Flickr.com: Life on a Grain of Sand

Image by Pacific Northwest National Laboratory

Extracellular polymeric substances (EPS)

Highly hydrated polymers – mainly polysaccharides, proteins, and DNA

Provide an ideal environment for:

- chemical reactions
- nutrient entrapment
- protection against environmental stresses such as salinity and drought

•

Extracellular polymeric substances (EPS)

Can enhance the aggregation of soil particles

- Industrial applications:
 - Maintain moisture
 - Biocompatible
 - Gelling and thickening capability

www.microped.uni-bremen.de

www.microped.uni-bremen.de

Lehmann et. al. 2008

Soil Organic Matter

- Nitrogen uptake by plants
 - Nitrate
 - Ammonium
 - Amino acids & other organic N???

fungicultura.wordpress.com

fungicultura.wordpress.com

Soil Organic Matter

 Theory: In the rhizosphere, bioavailable exudate compounds induce greater microbial activity and enzyme production because they serve as 'co-metabolites'

 Promote microbial growth; more microbes, therefore greater SOM breakdown

Root Exudates & Soil Organic Matter

- Experiment (Keiluweit et al. 2015):
 - Compared "artificial exudates": glucose, acetic acid, oxalic acid

– Which promotes soil microbes the most?

Exudate treatments

Oxalic acid

Control

How does oxalic acid promote microbial growth?

How does oxalic acid promote microbial growth?

Soil Biology and Biochemistry

Volume 84, May 2015, Pages 168-176

Review paper

Organic acid induced release of nutrients from metal-stabilized soil organic matter – The unbutton model

Marianne Clarholm ^a △ , Ulf Skyllberg ^b, Anna Rosling ^c

www.microped.uni-bremen.de

Nitrogen Use Efficiency

Agronomic use efficiency (AEN):

- Most commonly used index by agronomists
- Increase in economic yield per unit N fertilizer applied
- Calculation requires establishment of a research plot without N input (control plot)

Nitrogen Use Efficiency

Agronomic use efficiency (AEN):

- Most commonly used index by agronomists
- Units increase in economic yield per unit N fertilizer applied

Calculated by: AEN (kg kg⁻¹) = $G_f - G_u / N_a$

- G_f is the grain output from N fertilized plot (kg)
- G_u is the grain output from the control plot
- N_a is the quantity of nitrogen applied (kg)

2009/2010

2009/2010

LOSKOP 2015/2016

Does Soil Organic Matter Matter?

Does Soil Organic Matter Matter?

SOM releases N when sugarcane needs it most

 N from SOM offers insurance against loss of fertilizer N

- What increases long-term storage of SOM the most?
 - Lignin (tough to break down) or
 - Glucose (easy to break down)
- Lignin remnants form humus (humification)
 - Accepted wisdom 20 years ago

- What increases long-term storage of SOM the most?
 - Lignin (tough to break down) or
 - Glucose (easy to break down)
- Many experiments show that the reverse is true
 - Both lignin and glucose are metabolised within about 10 years
 - Added glucose increases SOM more!

- Added glucose increases SOM more than added lignin
- Lignin is tough to break down, so microbes need more energy to use it as food – more of the C is oxidised to CO₂
- Glucose is easily broken down, and more of its
 C is retained in microbial cells the cell
 remnants ('skeletons') form humus

 The cell debris attached to clay minerals is protected from breakdown by other microbes

Flickr.com: Life on a Grain of Sand

Building soils

- Add organic materials on a regular basis
 - animal manures, composts, cover crops, rotation crops with large amounts of residue
 - different types of organic materials have different positive effects

Building soils

- Keep soil covered with living vegetation and/or crop residues
 - cover crops, sod crops in rotation, reduced tillage practices
 - encourages water infiltration, reduces erosion, encourages beneficial organisms

Fred Magdoff & Harold Van Es 2010

Free at www.sare.org

Conclusion

Soil-plant interactions are complex

Conclusion

Soil-plant interactions are complex

Have fun with soils!

Fun with Flags Soils

Fun with Flags Soils

Thank You

agriculture & rural development

Department: agriculture & rural development PROVINCE OF KWAZULU-NATAL