Labile and Non-Labile Soil Carbon

R van Antwerpen

Organic Matter

- It is the most important constituent required to rebuild or to maintain soil health.
- When Organic Matter is incorporated into the soil its appearance change as it decompose and progresses through the different carbon pools.
- One of these pools is Labile Carbon: the fraction of soil organic carbon with the most rapid turnover. Labile Carbon is also a major source of nutrients and energy to sustain life in soils and to maintain the condition of soils.
- Another pool is Non-Labile Carbon which is important for the long-term storage of Carbon in soils.
- To obtain these benefits, we must adopt land management practices that are efficient in getting us there.

	Benchmarking management for improving and maintaining soil health	
	SYSTEM	1 Allen man and a second
Most 1	. Kikuyu pasture; grazed	
aggrading	Ryegrass/clover pasture; grazed	
	Natural grassland or bush	
	Permanent grass; hay production (e.g. <i>E. curvula</i>)	
	No-till annual row crop, legume rotation, residues remain	
6	• Sugarcane, not burned, residues remain, green manure every 10 years	
7. 9.	Sugarcane, not burned, residues remain, no green manure	
	No-till annual cropping; residues remain	
	 Sugarcane, burned, regular OM additions (e.g. chicken litter) 	→
	No-till annual cropping; grain & residues harvested (e.g. maize silage)	
	Annual row cropping, conventional tillage (plough & disc), residues remain	
12	 Sugarcane, burned, green manure at plant 	
13	· Sugarcane, burned, no green manure	->
Most	Annual row cropping, conventional tillage; residues removed (e.g. maize silage)	
degrading	Regular and intensive tillage; little return of residues (typically vegetables)	

Soil Organic Matter (SOM)

- SOM occupy only a small fraction of the total soil volume, but it is extremely important to
 - · sustain soil life as a source nutrients and energy and
 - to sustain or improve the condition of soils
- SOM consists of
 - living plant and animal tissue and
 - dead material in various stages of decomposition

Carbon fractions in soil

Sequestration time

Factors affecting the Development, Duration and Quantification of Labile Carbon

- Region / Climate
- Temperature
- Water availability
- Slope
- Texture
- Parent material
- <u>Soil pH</u>

- Land use
- Land management for production
- Sampling depth
- Biological activity
- Acidification
- Salinity
- Sodicity

• SOC = Total Soil Organic Carbon

• Labile C / SOC = Carbon ratio

Effect of Sampling Depth on Quantification of Carbon Pools

Summary of Factors affecting Labile Carbon

Labile carbon decrease with an increase in:

- Temperature
- Sampling depth
- pH
- Alleviation (higher position in the landscape)

Labile carbon increase with an increase in:

- Rainfall
- Clay content
- Organic matter
- Decomposers of organic matter

Land management

Effect of Land Management on Soil Carbon

Long term storage of Carbon in soil or Carbon sequestration

- Labile C can be used to gauge the impact of a recent change in land use on SOM. However, to benefit from carbon sequestration and carbon credits we should be looking at a stable form of carbon.
- About 2 500 years ago, farmers in the Amazon improved their soils with charcoal to depths > 1m. Portuguese settlers named this <u>terra preta</u>, or "black earth."

Routes to obtain stable C for long term storage

• Natural process: Plant residue decompose to produce various C pools with different sequestration times. E.g. Dissolved OM (minutes to days), Labile C (2-50 yrs), Humus (10s-100s yrs) and Biochar (100s-1000s yrs).

- Anthropogenic process: This refers to converting organics into charcoal (biochar) after partial extraction of the energy (heat and oils) through pyrolysis. Sequestration potential of C as biochar can range from about 100s to 1000s of years.
- **Question:** Can sugarcane be used as a source of biochar?

Improving soil C for long-term storage

An alternative method of C sequestration Long-term storage of C above ground

 Plants plants are required that will grow very old. Examples are: Welwitschia >3000 years, Redwoods trees >2000 years, Pine trees 100 – 1000 years, Eucalyptus trees 250 years, Wattle trees 15-30 years.

